首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用三亲本接合方法将含有ntrB基因两端同源序列的自杀载体pJQ-ntrB-cat导入土壤杆菌(Agrobacterium sp.ATCC 31749)中,获得了ntrB基因突变株.结果表明,ntrB突变株对NH4Cl和KNO3的利用能力有所下降.当分别以谷氨酸和谷氨酰胺为氮源时,ntrB突变株生长状况与野生菌相同.n...  相似文献   

2.
The mechanism of nitrogen signal regulating curdlan biosynthesis in Agrobacterium sp. ATCC 31749 was investigated. Under nitrogen limitation, more carbon flux is directed to curdlan synthesis with low specific growth rate. When ntrB and ntrC genes in Agrobacterium sp. were inactivated, NH4Cl utilization ability was significantly impaired in the ntrB and ntrC mutants and curdlan production was significantly reduced. Through proteomic analysis, nearly 40 proteins did not express in ntrC mutant compared with wild type strain. The levels of 22 proteins were significantly increased and 21 proteins were repressed after nitrogen exhaustion. Phosphoglucomutase activity in Agrobacterium sp. was also decreased. However, phosphoglucomutase activity in the ntrC mutant did not change. On that basis, an NtrC-dependent regulatory network for curdlan biosynthesis in response to nitrogen limitation in Agrobacterium sp. ATCC 31749 is proposed.  相似文献   

3.
4.
The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.  相似文献   

5.
The regulatory function of global regulator NtrC on curdlan biosynthesis and nitrogen consumption under nitrogen-limited condition in Agrobacterium sp. ATCC 31749 was investigated. The ntrC mutant of Agrobacterium sp. was constructed by homologous recombination. The ability to utilize NH4Cl and KNO3 was impaired in the mutant. Other nitrogenous compounds, such as glutamic acid and glutamine, were utilized normally. Curdlan production capability was impaired severely in the mutant. Curdlan production was 5-fold lower than the wild type strain in batch fermentation with NH4Cl as the sole nitrogen source. However, up to 6.5 g l−1 of a newly found alkali-insoluble biopolymer was produced by the ntrC mutant when glutamic acid was used as nitrogen source. The new biopolymer had glycosidic bond and hydroxyl group but no β-configuration absorption peak on IR spectrum was found as different from curdlan. In addition, the mutant exhibited a rapid morphological change from the dot to rod form. These results deduced that the global regulator NtrC was involved in curdlan and other biopolymer biosynthesis in Agrobacterium sp. ATCC 31749 in response to nitrogen-limited condition.  相似文献   

6.
The addition of a limited concentration of yeast extract to a minimal salt medium (MSM) enhanced cell growth and increased the production of curdlan whereas nitrogenlimitation was found to be essential for the higher production of curdlan byAgrobacterium sp. ATCC 31749. As the amount of the inoculum increased, the cell growth as well as the production of curdlan also increased in the MSM without a nitrogen source. The cell growth and production of curdlan increased as the initial pH of the medium decreased as low as 5.0. The conversion rate and concentration of curdlan from 2% (w/v) glucose in the MSM with concentrated cells under nitrogen deletion was 67% and 13.4 g/L, respectively. The highest conversion rate of curdlan under the conditions optimized in this study was 71% when the glucose concentration was 1% (w/v).  相似文献   

7.
Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb 3-type terminal oxidase and cytochrome caa 3-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.  相似文献   

8.
Summary A laboratory-scale, two-stage continuous process for the production of curdlan-type exopolysaccharide has been operated in steady-state for 500hr. Two continuous flow, constant volume fermenters are connected in series. A stable, curdlan-producing strain of Alcaligenes faecalis var myxogenes ATCC 31749 is grown aerobically in a nitrogen-limited chemostat operating near Dmax at 0.24 hr–1. The effluent is introduced directly into a second larger constant volume fermenter which is being simultaneously fed a glucose solution at a fixed rate. Under sub-optimal conditions associated with curdlan production, the observed Qp was 0.05 g curdlan/g cell/hr. At a biomass level of 4 g/L in the second stage, curdlan was present at 10 g DW/L and the volumetric productivity was 0.2 g/g cell/hr. The substrate (glucose) conversion efficiency was 42%. The process is described in patents applied for on behalf of George Weston Ltd. (Toronto, Canada).  相似文献   

9.
10.
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.  相似文献   

11.
氨水流加用于粪产碱杆菌热凝胶发酵   总被引:2,自引:0,他引:2  
热凝胶是粪产碱杆菌(Alcaligenes faecalis)在氮源限制条件下生成的水不溶性胞外多糖,分泌到胞外后就附着在菌体外壁,因此在细胞生长期提高生物量对促进热凝胶合成有重要意义。热凝胶分批发酵时, 起始NH4Cl浓度提高到3.6 g/L时能促进菌体生长和热凝胶合成,但是过量NH4Cl会抑制热凝胶合成,且生物量提高不是很明显。为了进一步提高菌体浓度, 在菌体生长期, 氨水取代NaOH溶液进行流加控制pH为7.0, 随后又用2 mol/L NaOH控制pH 5.6。实验表明, 氨水流加使菌体浓度大大提高,流加24 h使菌体浓度达到18.8 g/L。但是菌体浓度过高也会抑制热凝胶的合成,在氨水流加14 h时,菌体浓度在11.9 g/L左右, 热凝胶产量最高(72 g/L)。  相似文献   

12.
热凝胶是粪产碱杆菌(Alcaligenes faecalis)在氮源限制条件下生成的水不溶性胞外多糖,分泌到胞外后就附着在菌体外壁,因此在细胞生长期提高生物量对促进热凝胶合成有重要意义。热凝胶分批发酵时, 起始NH4Cl浓度提高到3.6 g/L时能促进菌体生长和热凝胶合成,但是过量NH4Cl会抑制热凝胶合成,且生物量提高不是很明显。为了进一步提高菌体浓度, 在菌体生长期, 氨水取代NaOH溶液进行流加控制pH为7.0, 随后又用2 mol/L NaOH控制pH 5.6。实验表明, 氨水流加使菌体浓度大大提高,流加24 h使菌体浓度达到18.8 g/L。但是菌体浓度过高也会抑制热凝胶的合成,在氨水流加14 h时,菌体浓度在11.9 g/L左右, 热凝胶产量最高(72 g/L)。  相似文献   

13.
A significant problem in scale-down cultures, rarely studied for metabolic characterization and curdlan-producing Agrobacterium sp. ATCC 31749, is the presence of dissolved oxygen (DO) gradients combined with pH control. Constant DO, between 5% and 75%, was maintained during batch fermentations by manipulating the agitation with PID system. Fermentation, metabolic and kinetic characterization studies were conducted in a scale-down system. The curdlan yield, intracellular nucleotide levels and glucose conversion efficiency into curdlan were significantly affected by DO concentrations. The optimum DO concentrations for curdlan production were 45–60%. The average curdlan yield, curdlan productivity and glucose conversion efficiency into curdlan were enhanced by 80%, 66% and 32%, respectively, compared to that at 15% DO. No apparent difference in the gel strength of the resulting curdlan was detected. The comparison of curdlan biosynthesis and cellular nucleotide levels showed that curdlan production had positive relationship with intracellular levels of UTP, ADP, AMP, NAD+, NADH and UDP-glucose. The curdlan productivity under 45% DO and 60% DO was different during 20–50 h. However, after 60 h curdlan productivity of both conditions was similar. On that basis, a simple and reproducible two-stage DO control process for curdlan production was developed. Curdlan production yield reached 42.8 g/l, an increase of 30% compared to that of the single agitation speed control process.  相似文献   

14.
The crdS gene of Agrobacterium sp. strain ATCC31749 encodes the curdlan synthase (CrdS) protein based on the homology of the derived CrdS protein sequence with those of beta-glycosyl transferases with repetitive action patterns (Stasinopoulos et al. [1999] Glycobiology, 9, 31-41). Here we show that chemical (NTG) mutagenesis of crdS abolishes curdlan production and the induced mutations can be complemented by a cloned crdS amplicon, thus providing genetic confirmation that crdS is essential for curdlan production. When expressed in the native Agrobacterium or in Escherichia coli, the largely hydrophobic CrdS protein exhibited an Mr of approximately 60 kDa (compared with the predicted mass of 73,121 Da) and was located in the inner membrane of both bacteria. By analyzing reciprocal fusions between crdS and the reporter genes, lacZ and phoA, and assessing the sensitivity of CrdS in spheroplasts to proteinase K, CrdS was shown to be an integral membrane protein with seven transmembrane helices and an Nout-Cin disposition. A central large and relatively hydrophilic cytoplasmic region carries the substrate-binding and catalytic D,D,D35QxxRW motif. The amino acid sequence of this domain of CrdS was threaded onto the 3D structure of the comparable domain of the SpsA protein, a member of the family GT-2 glycosyl transferases, and enabled the identification of corresponding amino acids involved in binding UDP in CrdS. Analysis of Agrobacterium membrane preparations using blue native-PAGE provided preliminary evidence that CrdS occurs in multimeric protein complexes of approximately 420 kDa and approximately 500 kDa.  相似文献   

15.
Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen-limited conditions not associated with cell growth. A novel curdlan production process was developed based on the different nutrient requirements for microbial cell growth and its efficiency was increased by integrating carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. By feeding ammonium solution to supply abundant nitrogen source and controlling pH in Fermentor I, cell growth was accelerated. High cell density of 29 g/L was attained. The culture broth in Fermentor I was then inoculated into sequencing Fermentor II which alleviated the high requirement for dissolved oxygen and accumulation of inhibitory metabolic by-products during curdlan production. Fermentor I promoted cell growth. Curdlan production started instantaneously in Fermentor II. By feeding nutrient solution with high carbon/nitrogen ratio and NaOH solution for pH adjustment, a feasible and optimal curdlan production process was formulated. The productivity, conversion efficiency and curdlan yield were achieved of 0.98 g/(L h), 57% (w) and 67 g/L, respectively. Such novel process can be scaled up for significant cost reduction at the industrial level.  相似文献   

16.
17.
18.
Genes essential for the production of a linear, bacterial (1-->3)-beta- glucan, curdlan, have been cloned for the first time from Agrobacterium sp. ATCC31749. The genes occurred in two, nonoverlapping, genomic fragments that complemented different sets of curdlan( crd )-deficient transposon-insertion mutations. These were detected as colonies that failed to stain with aniline blue, a (1-->3)-beta-glucan specific dye. One fragment carried a biosynthetic gene cluster (locus I) containing the putative curdlan synthase gene, crdS, and at least two other crd genes. The second fragment may contain only a single crd gene (locus II). Determination of the DNA sequence adjacent to several locus I mutations revealed homology to known sequences only in the cases of crdS mutations. Complete sequencing of the 1623 bp crdS gene revealed highest similarities between the predicted CrdS protein (540 amino acids) and glycosyl transferases with repetitive action patterns. These include bacterial cellulose synthases (and their homologs), which form (1-->4)-beta-glucans. No similarity was detected with putative (1-->3)- beta-glucan synthases from yeasts and filamentous fungi. Whatever the determinants of the linkage specificity of these beta-glucan synthases might be, these results raise the possibility that (1-->3)-beta-glucans and (1-->4)-beta-glucans are formed by related catalytic polypeptides.   相似文献   

19.
In order to elucidate the biosynthetic process of cellulose and curdlan, 13C-labeled polysaccharides were biosynthesized by Acetobacter xylinum (IFO 13693) and Agrobacterium sp. (ATCC 31749), from culture media containing -(1-13C)glucose, -(2-13C)glucose, -(4-13C)glucose, or -(6-13C)glucose as the carbon source, and their structures were determined by 13C NMR spectroscopy. The labeling was mainly found in the original position, indicating direct polymerization of introduced glucoses. In addition, the transfer of labeling from C-2 to C-1, C-3 and C-5, from C-4 to C-1, C-2 and C-3, and from C-6 to C-1 was found in celluloses. In curdlan, the transfer of labeling from C-1 to C-3, from C-2 to C-1 and C-3, from C-4 to C-1, C-2 and C-3, and from C-6 to C-1 and C-3 was observed. From analysis of this labeling, the biosynthetic process of cellulose and curdlan was explained as involving six routes. The percentages of each route via which cellulose or curdlan is biosynthesized were estimated for upper (C-1 to C-3) and lower portions (C-4 to C-6) of glucosidic units in the polysaccharides. It is noted that very few polysaccharides are formed via the Embden-Meyerhof pathway. The lower half (C-4 to C-6) structure of introduced glucoses is well preserved in the polysaccharides.  相似文献   

20.
Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear β-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号