首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingoid long-chain base kinase Lcb4 catalyzes the production of the bioactive lipid molecules the long-chain base 1-phosphates. Although Lcb4 has no apparent transmembrane-spanning domain, it is tightly associated with the membrane. Here, we demonstrate that Lcb4 is modified by palmitoylation. This modification was greatly reduced in mutants for AKR1, which was recently identified as encoding a protein acyltransferase. In vitro experiments revealed that Akr1 indeed acts as a protein acyltransferase for Lcb4. Studies using site-directed mutagenesis indicated that Cys-43 and Cys-46 are palmitoylated. The loss of palmitoylation on Lcb4 caused several effects, including mislocalization of the protein to the cytosol, reduced phosphorylation, and loss of downregulation during the stationary phase. Although Akr2 is highly homologous to Akr1, the deletion of AKR2 did not result in any remarkable phenotypes. However, overproduction of Akr2 resulted in reduced amounts of Lcb4. We demonstrated that Akr2 is an unstable protein and is degraded in the vacuole. Akr2 exhibits high affinity for Lcb4, and in Akr2-overproducing cells this interaction caused unusual delivery of Lcb4 to the vacuole and degradation.  相似文献   

2.
3.
1. The present study presents the activity profiles of cholinephosphotransferase, lysolecithin:lysolecithin acyltransferase and lysolecithin acyltransferase at different stages of development of the mouse lung. 2. The specific activity of cholinephosphotransferase, a key enzyme in the de novo synthesis of phosphatidylcholine, increases during the later stages of fetal development until it reaches a maximal value at a gestational age of 17 days, i.e. 2 days before term. Thereafter, the activity of the enzyme declines again until around term. 2. The specific activity of lysolecithin:lysolecithin acyltransferase which catalyzes the transesterification between two molecules of 1-acyl-sn-glycero-3-phosphocholine, appears to be much lower than that of cholinephosphotransferase at gestational ages below 18 days. However, around day 18, the specific activity of lysolecithin:lysolecithin acyltransferase increases dramatically until it almost equals the maximal activity of cholinephosphotransferase measured on day 17. 4. The specific activity of lysolecithin acyltransferase, which catalyzes the direct acylation of 1-acyl-sn-glycero-3-phosphocholine, does not change significantly during the prenatal development and is lower than that of either lysolecithin:lysolecithin acyltransferase or cholinephosphotransferase at all stages of development. 5. These results are discussed in view of the possible role of these enzymes in the biosynthesis of pulmonary 1,2-dipalmitoyl-sn-glycero-3-phosphocholine.  相似文献   

4.
5.
An enzyme of molecular weight 32,000 comprising a single subunit has been isolated from whole cell extracts of the yeast Saccharomyces cerevisiae. In vitro, the enzyme transfers the gamma phosphate of ATP to a protein substrate, histone H4, to produce an alkali-stable phosphorylation. Modification of the substrate histidine with diethylpyrocarbonate prevented phosphorylation. Phosphoamino acid analysis of the phosphorylated substrate showed the presence of 1-phosphohistidine. Hence, the isolated enzyme is a protein histidine kinase. A novel assay for acid-labile alkali-stable protein phosphorylation was used in the purification of the kinase activity to a final specific activity of 2,700 nmol/15 min/mg. The purified enzyme phosphorylates specifically histidine 75 in histone H4 and does not phosphorylate histidine 18 nor histidine residues in any other core histone. Steady state kinetic data are consistent with an ordered sequential reaction with Km values for Mg-ATP and histone H4 of 60 and 17 microM, respectively. The protein histidine kinase requires a divalent cation such as Mg2+, Co2+, or Mn2+ but will not use Ca2+, Zn2+, Cu2+, Fe2+, spermine, or spermidine. This is the first purification of an enzyme that catalyzes N-linked phosphorylation in proteins.  相似文献   

6.
7.
The 1-Acylglycerolphosphate acyltransferase is crucial enzyme for synthesis of glycerolipids as well as triacylglylcerol biosynthesis in eukaryotes. Six members of 1-acyl-sn-glycerol-3-phosphate acyltransferase family in human have been described, which were AGPAT1, 2, 3, 4, 5 and 6. Here we report the cloning and characterization of another novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase member AGPAT7 (1-acyl-sn-glycerol-3-phosphate acyltransferase 7) gene, which was mapped to human chromosome 15q14. The AGPAT7 cDNA is 1898 bp in length, encoding a putative protein with 524 amino acid residues, which contains an acyltransferase domain in 123-234 aa. RT PCR amplification in 18 human tissues indicated that human AGPAT7 gene was widely expressed in uterus, thymus, pancreas, skeletal muscle, bladder, stomach, lung and testis. AGPAT7 protein was mainly localized to the endoplasmic reticulum (ER) in Hela cells.  相似文献   

8.
Initiation of poly(ADP-ribosyl) histone synthesis was achieved in vitro using an apparently homogeneous preparation of poly(ADP-ribose) synthetase. When poly(ADP-ribose) was synthesized in the presence of DNA and increase amounts of histone H1, increasing portions (up to about 55%) of the product were found associated with the histone, judging from solubility in 5% HClO4 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Most of the polymers were directly attached to the histone protein and not produced by elongation from pre-existing ADP-ribose; the cohesive end of poly(ADP-ribose), isolated as ribose 5-phosphate with snake venom phosphodiesterase digestion, was labeled almost quantitatively with [ribose (NMN)-14C]NAD. The poly(ADP-ribose) . histone linkage was labile in mild alkali and neutral NH2OH, suggesting that the same bond, probably ester, was formed in this system as in crude chromatin or isolated nuclei. Elongation of a histone-bound monomer into a polymer by this enzyme was previously demonstrated (Ueda, K., Kawaichi, M., Okayama, H., and Hayaishi, O. (1979) J. Biol. Chem. 254, 679-687), but initiation of ADP-ribose chains on histone has never been shown with a purified enzyme. This appeared to be due to the low concentrations of histone so far used. These findings indicated that a single enzyme catalyzes two different types of reaction, i.e. an attachment of ADP-ribose to histone and its elongation into a polymer.  相似文献   

9.
Calf liver contains two nuclear N-acetyltransferases which are separated by chromatography on hydroxylapatite. Both acetyltransferase A and acetyltransferase B will transfer acetate from acetyl-CoA to either histone or spermidine. The same protein catalyzes the reaction with both substrates; this is shown by a constant ratio of spermidine to histone activity over a 5,000-fold purification and identical heat denaturation kinetics for both spermidine and histone acetyltransferase activity with each enzyme. Histone is preferentially acetylated when both acceptors are present. Both enzymes preferentially acetylate polyamines (spermidine, spermine, and diaminodipropylamine) to diamines. Acetyltransferase A acetylates histones in the order: whole histone greater than H4 greater than H2A greater than H3 greater than H2B greater than H1; acetyltransferase B in the order: whole histone greater than H4 = H3 greater than H2A greater than H2B greater than H1. Michaelis constants are 2 X 10(-4)M for spermidine and 9 X 10(-6)M for acetyl-CoA. Acetyltransferase A has a molecular weight of 150,000; acetyltransferase B 175,000. Both enzymes are strongly inhibited by p-chloromercuribenzoate and weakly inhibited by EDTA.  相似文献   

10.
11.
Curcumin has been shown to mitigate cancer phenotypes such as invasive migration, proliferation, and survival by disrupting numerous signaling pathways. Our previous studies showed that curcumin inhibits integrin β4 (ITG β4)-dependent migration by blocking interaction of this integrin with growth factor receptors in lipid rafts. In the current study, we investigated the possibility that curcumin inhibits ITG β4 palmitoylation, a post-translational modification required for its lipid raft localization and signaling activity. We found that the levels of ITG β4 palmitoylation correlated with the invasive potential of breast cancer cells, and that curcumin effectively reduced the levels of ITG β4 palmitoylation in invasive breast cancer cells. Through studies of ITG β4 palmitoylation kinetics, we concluded curcumin suppressed palmitoylation independent of growth factor-induced phosphorylation of key ITG β4 Ser and Tyr residues. Rather, curcumin blocked autoacylation of the palmitoyl acyltransferase DHHC3 that is responsible for ITG β4 palmitoylation. Moreover, these data reveal that curcumin is able to prevent the palmitoylation of a subset of proteins, but not indiscriminately bind to and block all cysteines from modifications. Our studies reveal a novel paradigm for curcumin to account for much of its biological activity, and specifically, how it is able to suppress the signaling function of ITG β4 in breast cancer cells.  相似文献   

12.
Human histone demethylase LSD1 is a flavin-dependent amine oxidase that catalyzes the specific removal of methyl groups from mono- and dimethylated Lys4 of histone H3. The N-terminal tail of H3 is subject to various covalent modifications, and a fundamental question in LSD1 biology is how these epigenetic marks affect the demethylase activity. We show that LSD1 does not have a strong preference for mono- or dimethylated Lys4 of H3. Substrate recognition is not confined to the residues neighboring Lys4, but it requires a sufficiently long peptide segment consisting of the N-terminal 20 amino acids of H3. Electrostatic interactions are an important factor in protein-substrate recognition, as indicated by the high sensitivity of Km to ionic strength. We have probed LSD1 for its ability to demethylate Lys4 in presence of a second modification on the same peptide substrate. Methylation of Lys9 does not affect enzyme catalysis. Conversely, Lys9 acetylation causes an almost 6-fold increase in the Km value, whereas phosphorylation of Ser10 totally abolishes activity. LSD1 is inhibited by a demethylated peptide with an inhibition constant of 1.8 microM, suggesting that LSD1 can bind to H3 independently of Lys4 methylation. LSD1 is a chromatin-modifying enzyme, which is able to read different epigenetic marks on the histone N-terminal tail and can serve as a docking module for the stabilization of the associated corepressor complex(es) on chromatin.  相似文献   

13.
Growth-associated H1 histone kinase, a homolog of the yeast cdc2+/CDC28 protein kinases that control entry into mitosis, is a chromatin-bound cyclic nucleotide-independent enzyme found only in growing cells. In a procedure involving salt extraction of chromatin, ammonium sulfate precipitation, and three chromatographic steps, the enzyme has been purified greater than 10,000-fold from Novikoff hepatoma cells. Enzyme purified by this procedure catalyzes the transfer to H1 histone of 2.7 mumol of phosphate/min/mg, a specific activity within the range of those reported for a number of homogeneous or nearly homogeneous protein kinases. Further purification to near homogeneity was achieved by an additional step of sucrose density gradient fractionation. Enzyme activity in the sucrose gradient is associated with two polypeptides of apparent Mr 60,000 and 33,000 on sodium dodecyl sulfate-gel electrophoresis. Substrate specificity studies show that in addition to H1, proteins with H1-like structure and function including histone H1(0), the erythrocyte-specific H5 histone, and the testis-specific H1t histone are phosphorylated. Nucleosome core histone H3, high mobility group proteins 1, 2, 14, and 17, protamine, casein, and ribosomal protein S6 are not substrates.  相似文献   

14.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs (HXKX(4)D), denoted HKD, located in the N- and C-terminal halves, which are required for phospholipase D activity. The two halves of rPLD1 can associate in vivo, and the association is essential for catalytic activity and Ser/Thr phosphorylation of the enzyme. In this study, we found that this association is also required for palmitoylation of rPLD1, which occurs on cysteines 240 and 241. In addition, palmitoylation of rPLD1 requires the N-terminal sequence but not the conserved C-terminal sequence, since rPLD1 that lacks the first 168 amino acids is not palmitoylated in vivo, while the inactive C-terminal deletion mutant is. Palmitoylation of rPLD1 is not necessary for catalytic activity, since N-terminal truncation mutants lacking the first 168 or 319 amino acids exhibit high basal activity although they cannot be stimulated by protein kinase C (PKC). The lack of response to PKC is not due to the lack of palmitoylation, since mutation of both Cys(240) and Cys(241) to alanine in full-length rPLD1 abolishes palmitoylation, but the mutant still retains basal activity and responds to PKC. Palmitoylation-deficient rPLD1 can associate with crude membranes; however, the association is weakened. Wild type rPLD1 remains membrane-associated when extracted with 1 m NaCl or Na(2)CO(3) (pH 11), while rPLD1 mutants that lack palmitoylation are partially released. In addition, we found that palmitoylation-deficient mutants are much less modified by Ser/Thr phosphorylation compared with wild type rPLD1. Characterization of the other cysteine mutations of rPLD1 showed that mutation of cysteine 310 or 612 to alanine increased basal phospholipase D activity 2- and 4-fold, respectively. In summary, palmitoylation of rPLD1 requires interdomain association and the presence of the N-terminal 168 amino acids. Mutations of cysteines 240 and 241 to alanine abolish the extensive Ser/Thr phosphorylation of the enzyme and weaken its association with membranes.  相似文献   

15.
This report provides definitive evidence that the protein 1-Cys peroxiredoxin is a bifunctional ("moonlighting") enzyme with two distinct active sites. We have previously shown that human, rat, and bovine lungs contain an acidic Ca(2+)-independent phospholipase A(2) (aiPLA(2)). The cDNA encoding aiPLA(2) was found to be identical to that of a non-selenium glutathione peroxidase (NSGPx). Protein expressed using a previously reported E. coli construct which has a His-tag and 50 additional amino acids at the NH(2) terminus, did not exhibit aiPLA(2) activity. A new construct which contains the His-tag plus two extra amino acids at the COOH terminus when expressed in Escherichia coli generated a protein that hydrolyzed the sn-2 acyl chain of phospholipids at pH 4, and exhibited NSGPx activity with H(2)O(2) at pH 8. The expressed 1-Cys peroxiredoxin has identical functional properties to the native lung enzyme: aiPLA(2) activity is inhibited by the serine protease inhibitor, diethyl p-nitrophenyl phosphate, by the tetrahedral mimic 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33), and by 1-Cys peroxiredoxin monoclonal antibody (mAb) 8H11 but these agents have no effect on NSGPx activity; NSGPx activity is inhibited by mercaptosuccinate and by 1-Cys peroxiredoxin mAb 8B3 antibody which have no effect on aiPLA(2) activity. Mutation of Ser(32) to Ala abolishes aiPLA(2) activity, yet the NSGPx activity remains unaffected; a Cys(47) to Ser mutant is devoid of peroxidase activity but aiPLA(2) activity remains intact. These results suggest that Ser(32) in the GDSWG consensus sequence provides the catalytic nucleophile for the hydrolase activity of aiPLA(2), while Cys(47) in the PVCTTE consensus sequence is at the active site for peroxidase activity. The bifunctional catalytic properties of 1-Cys peroxiredoxin are compatible with a simultaneous role for the protein in the regulation of phospholipid turnover as well as in protection against oxidative injury.  相似文献   

16.
Sphingomyelin synthase (SMS) is an enzyme that catalyzes the transfer of phosphocholine from phosphatidylcholine to ceramide for sphingomyelin synthesis. Here, we show that SMS2 is palmitoylated at cysteine residues via thioester bonds in the COOH-terminal cytoplasmic tail. [3H]palmitic acid labeling of SMS1 or SMS2-overexpressing HEK293 cells revealed that SMS2, but not SMS1, is palmitoylated. Site-directed mutagenesis of cysteine residues to alanine ones indicated that the COOH-terminal cysteine cluster of the enzyme is palmitoylated. Mutation of all potential palmitoylation sites resulted in a dramatic reduction in the plasma membrane distribution of SMS2, whereas it did not affect the in vitro enzyme activity. These results suggested that this posttranslational modification is important for determination of the subcellular localization of SMS2.  相似文献   

17.
The mitogen-activated protein kinase cascades elicit modification of chromatin proteins such as histone H3 by phosphorylation concomitant with gene activation. Here, we demonstrate for the first time that the mixed lineage kinase-like mitogen-activated protein triple kinase (MLTK)-alpha phosphorylates histone H3 at Ser28. MLTK-alpha but neither a kinase-negative mutant of MLTK-alpha nor MLTK-beta interacted with and phosphorylated histone H3 in vivo and in vitro. When overexpressed in 293T or JB6 Cl41 cells, MLTK-alpha phosphorylated histone H3 at Ser28 but not at Ser10. The interaction between MLTK-alpha and histone H3 was enhanced by stimulation with ultraviolet B light (UVB) or epidermal growth factor (EGF), which resulted in the accumulation of MLTK-alpha in the nucleus. UVB- or EGF-induced phosphorylation of histone H3 at Ser28 was not affected by PD 98059, a MEK inhibitor, or SB 202190, a p38 kinase inhibitor, in MLTK-alpha-overexpressing JB6 Cl41 cells. Significantly, UVB- or EGF-induced phosphorylation of histone H3 at Ser28 was blocked by small interfering RNA of MLTK-alpha. The inhibition of histone H3 phosphorylation at Ser28 in the MLTK-alpha knock-down JB6 Cl41 cells was not due to a defect in mitogen- and stress-activated protein kinase 1 or 90-kDa ribosomal S6 kinase (p90RSK) activity. In summary, these results illustrate that MLTK-alpha plays a key role in the UVB- and EGF-induced phosphorylation of histone H3 at Ser28, suggesting that MLTK-alpha might be a new histone H3 kinase at the level of mitogen-activated protein kinase kinase kinases.  相似文献   

18.
Abe Y  Kita Y  Niikura T 《The FEBS journal》2008,275(2):318-331
Mammalian glycerol uptake/transporter 1 (Gup1), a homolog of Saccharomyces cerevisiae Gup1, is predicted to be a member of the membrane-bound O-acyltransferase family and is highly homologous to mammalian hedgehog acyltransferase, known as Skn, the homolog of the Drosophila skinny hedgehog gene product. Although mammalian Gup1 has a sequence conserved among the membrane-bound O-acyltransferase family, the histidine residue in the motif that is indispensable to the acyltransferase activity of the family has been replaced with leucine. In this study, we cloned Gup1 cDNA from adult mouse lung and examined whether Gup1 is involved in the regulation of N-terminal palmitoylation of Sonic hedgehog (Shh). Subcellular localization of mouse Gup1 was indistinguishable from that of mouse Skn detected using the fluorescence of enhanced green fluorescent protein that was fused to each C terminus of these proteins. Gup1 and Skn were co-localized with an endoplasmic reticulum marker, 78 kDa glucose-regulated protein, suggesting that these two molecules interact with overlapped targets, including Shh. In fact, full-length Shh coprecipitated with FLAG-tagged Gup1 by immunoprecipitation using anti-FLAG IgG. Ectopic expression of Gup1 with full-length Shh in cells lacking endogenous Skn showed no hedgehog acyltransferase activity as determined using the monoclonal antibody 5E1, which was found to recognize the palmitoylated N-terminal signaling domain of Shh under denaturing conditions. On the other hand, Gup1 interfered with the palmitoylation of Shh catalyzed by endogenous Skn in COS7 and NSC34. These results suggest that Gup1 is a negative regulator of N-terminal palmitoylation of Shh and may contribute to the variety of biological actions of Shh.  相似文献   

19.
Mammalian growth-associated H1 histone kinase, an enzyme whose activity is sharply elevated at mitosis, is similar to cdc2+ protein kinase from Schizosaccharomyces pombe and CDC28 protein kinase from Saccharomyces cerevisiae with respect to immunoreactivity, molecular size, and specificity for phosphorylation sites in H1 histone. Phosphorylation of specific growth-associated sites in H1 histone is catalyzed by yeast cdc2+/CDC28 kinase, as shown by the in vitro thermal lability of this activity in extracts prepared from temperature-sensitive mutants. In addition, highly purified Xenopus maturation-promoting factor catalyzes phosphorylation of the same sites in H1 as do the mammalian and yeast kinases. The data indicate that growth-associated H1 kinase is encoded by a mammalian homolog of cdc2+/CDC28 protein kinase, which controls entry into mitosis in yeast and frog cells. Since H1 histone is known to be an in vivo substrate of the mammalian kinase, this suggests that phosphorylation of H1 histone or an H1 histone counterpart is an important component of the mechanism for entry of cells into mitosis.  相似文献   

20.
We have shown okadaic acid (OA) and calyculin-A (CLA) inhibition of mouse oocyte phosphoprotein phosphatase 1 (PPP1C) and/or phosphoprotein phosphatase 2A (PPP2CA) results in aberrant chromatin condensation, as evidenced by the inability to resolve bivalents. Phosphorylation of histone H3 at specific residues is thought to regulate chromatin condensation. Therefore, we examined changes in histone H3 phosphorylation during oocyte meiosis and the potential regulation by protein PPPs. Western blot and immunocytochemical analysis revealed histone H3 phosphorylation changed during mouse oocyte meiosis, with changes in chromatin condensation. Germinal vesicle-intact (GV-intact; 0 h) oocytes had no phospho-Ser10 but did have phospho-Ser28 histone H3. Oocytes that had undergone germinal vesicle breakdown (GVBD; 2 h) and progressed to metaphase I (MI; 7 h) and MII (16 h) had phosphorylated Ser10 and Ser28 histone H3 associated with condensed chromatin. To determine whether OA-induced aberrations in chromatin condensation were due to alterations in levels of histone H3 phosphorylation, we assessed phosphorylation of Ser10 and Ser28 residues following PPP inhibition. Oocytes treated with OA (1 microM) displayed increased phosphorylation of histone H3 at both Ser10 and Ser28 compared with controls. To begin to elucidate which OA-sensitive PPP is responsible for regulating chromatin condensation and histone H3 phosphorylation, we examined spatial and temporal localization of OA-sensitive PPPs, PPP1C, and PPP2CA. PPPC2A did not localize to condensed chromatin, whereas PPP1beta (PPP1CB) associated with condensing chromatin in GVBD, MI, and MII oocytes. Additionally, Western blot and immunocytochemistry confirmed presence of the PPP1C regulatory inhibitor subunit 2 (PPP1R2) in oocytes at condensed chromatin during meiosis and indicated a change in PPP1R2 phosphorylation. Inhibition of oocyte glycogen synthase kinase 3 (GSK3) appeared to regulate phosphorylation of PPP1R2. Furthermore, inhibition of GSK3 resulted in aberrant oocyte bivalent formation similar to that observed following PPP inhibition. These data suggest that PPP1CB is the OA/CLA-sensitive PPP that regulates oocyte chromatin condensation through regulation of histone H3 phosphorylation. Furthermore, GSK3 inhibition results in aberrant chromatin condensation and appears to regulate phosphorylation of PPP1R2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号