首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IscA homologues are involved in iron-sulfur cluster biosynthesis. In the non-nitrogen-fixing cyanobacterium Synechocystis PCC 6803, there are two IscA homologues, SLR1417 and SLR1565 (designated IscA1 and IscA2), of which only IscA2 exists as a protein complex with the HEAT-repeat-containing protein, SLR1098 (IaiH). We observed that the absorption spectrum of the recombinant IscA2/IaiH complex resembles that of IscA2 alone, although it is sharper. In the presence of dithiothreitol, the [2Fe-2S] cluster of IscA2 alone, but not of the IscA2/IaiH complex, became reductively labile upon the addition of sodium dithionite. This implies that the IscA2 moiety of the [2Fe-2S] cluster is stabilized by the presence of IaiH. The [2Fe-2S] cluster of the IscA2/IaiH complex was destabilized by sodium dithionite in the absence of dithiothreitol, suggesting that the in vivo stability of the iron-sulfur cluster in the IscA2/IaiH complex is influenced by the redox state of cellular thiols. When any one of three conserved cysteine residues in IscA2, potential ligands for the [2Fe-2S] cluster, was replaced with serine, the amount of assembled [2Fe-2S] cluster and protein complex was significantly reduced in E. coli cells. The cysteine mutated IscA2/IaiH complexes that were present all contained a [2Fe-2S]-like cluster suggesting that the assembly of a stable iron-sulfur cluster bound to IscA2 is required for efficient and stable complex formation. Truncated IaiH proteins were analyzed using the yeast two-hybrid assay to identify the essential domain of IaiH that interacts physically with IscA2. At least 2 of the 5 N-terminal HEAT repeats of IaiH were found to be required for interaction with IscA2.  相似文献   

2.
Two proteins with similarity to IscA are encoded in the genome of the cyanobacterium Synechocystis PCC 6803. One of them, the product of slr1417 which accounts for 0.025% of the total soluble protein of Synechocystis was over-expressed in E. coli and purified. The purified protein was found to be mainly dimeric and did not contain any cofactor. Incubation with iron ions, cysteine and Synechocystis IscS led to the formation of one [2Fe2S] cluster at an IscA dimer as demonstrated (by the binding of about one iron and one sulfide ion per IscA monomer) by UV/Vis, EPR and M?ssbauer spectroscopy. M?ssbauer spectroscopy further indicated that the FeS cluster was bound by four cysteine residues. Site-directed mutagenesis revealed that of the five cysteine residues only C110 and C112 were involved in cluster binding. It was therefore concluded that the [2Fe2S] cluster is located between the two protomers of the IscA dimer and ligated by C110 and C112 of both protomers. The cluster could be transferred to apo ferredoxin, a [2Fe2S] protein, with a half-time of 10 min. Surprisingly, incubation of cluster-containing IscA with apo adenosine 5'-phosphosulfate reductase led to a reactivation of the enzyme which requires the presence of a [4Fe4S] cluster. This demonstrates that it is possible to build [4Fe4S] clusters from [2Fe2S] units.  相似文献   

3.
IscA belongs to an ancient family of proteins responsible for iron-sulfur cluster assembly in essential metabolic pathways preserved throughout evolution. We report here the 2.3 A resolution crystal structure of Escherichia coli IscA, a novel fold in which mixed beta-sheets form a compact alpha-beta sandwich domain. In contrast to the highly mobile secondary structural elements within the bacterial Fe-S scaffold protein IscU, a protein which is thought to have a similar function, the great majority of the amino acids that are conserved in IscA homologues are located in elements that constitute a well-ordered fold. However, the 10-residue C-terminal tail segment that contains two invariant cysteines critical for the Fe-S-binding function of a cyanobacterial (Synechocystis PCC) IscA homologue is not ordered in our structure. In addition, the crystal packing reveals a helical assembly that is constructed from two possible tetrameric oligomers of IscA.  相似文献   

4.
IscA was proposed to be involved in the iron-sulfur cluster assembly in Acidithiobacillus ferrooxidans encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In this study, the IscA from A. ferrooxidans ATCC 23270 was successfully expressed in Escherichia coli, and purified by affinity chromatography to homogeneity. To our surprise, the purified IscA was observed to be an iron-sulfur protein according to MALDI-TOF-MS and spectra results, which was capable of recruiting intracellular iron and sulfur and hosted a stable [Fe4S4] cluster. Site-directed mutagenesis for the protein revealed that Cys35, Cys99 and Cys101 were in ligating with the [Fe4S4] cluster. The [Fe4S4] cluster could be assembled in apoIscA with Fe2+ and sulfide in vitro. The IscA from A. ferrooxidans may function as a scaffold protein for the pre-assembly of Fe-S cluster and then transfer it to target proteins in A. ferrooxidans.  相似文献   

5.
An IscA homologue within the nif regulon of Azotobacter vinelandii, designated (Nif)IscA, was expressed in Escherichia coli and purified to homogeneity. Purified (Nif)IscA was found to be a homodimer of 11-kDa subunits that contained no metal centers or other prosthetic groups in its as-isolated form. Possible roles for (Nif)IscA in Fe-S cluster biosynthesis were assessed by investigating the ability to bind iron and to assemble Fe-S clusters in a NifS-directed process, as monitored by the combination of UV-vis absorption, M?ssbauer, resonance Raman, variable-temperature magnetic circular dichroism, and EPR spectroscopies. Although (Nif)IscA was found to bind ferrous ion in a tetrahedral, predominantly cysteinyl-ligated coordination environment, the low-binding affinity argues against a specific role as a metallochaperone for the delivery of ferrous ion to other Fe-S cluster assembly proteins. Rather, a role for (Nif)IscA as an alternate scaffold protein for Fe-S cluster biosynthesis is proposed, based on the NifS-directed assembly of approximately one labile [4Fe-4S](2+) cluster per (Nif)IscA homodimer, via a transient [2Fe-2S](2+) cluster intermediate. The cluster assembly process was monitored temporally using UV-vis absorption and M?ssbauer spectroscopy, and the intermediate [2Fe-2S](2+)-containing species was additionally characterized by resonance Raman spectroscopy. The M?ssbauer and resonance Raman properties of the [2Fe-2S](2+) center are consistent with complete cysteinyl ligation. The presence of three conserved cysteine residues in all IscA proteins and the observed cluster stoichiometry of approximately one [2Fe-2S](2+) or one [4Fe-4S](2+) per homodimer suggest that both cluster types are subunit bridging. In addition, (Nif)IscA was shown to couple delivery of iron and sulfur by using ferrous ion to reduce sulfane sulfur. The ability of Fe-S scaffold proteins to couple the delivery of these two toxic and reactive Fe-S cluster precursors is likely to be important for minimizing the cellular concentrations of free ferrous and sulfide ions. On the basis of the spectroscopic and analytical results, mechanistic schemes for NifS-directed cluster assembly on (Nif)IscA are proposed. It is proposed that the IscA family of proteins provide alternative scaffolds to the NifU and IscU proteins for mediating nif-specific and general Fe-S cluster assembly.  相似文献   

6.
The synthesis of iron-sulfur clusters in Escherichia coli is believed to require a complex protein machinery encoded by the isc (iron-sulfur cluster) operon. The product of one member of this operon, IscA, has been overexpressed, purified, and characterized. It can assemble an air-sensitive [2Fe-2S] cluster as shown by UV-visible and resonance Raman spectroscopy. The metal form but not the apoform of IscA binds ferredoxin, another member of the isc operon, selectively, allowing transfer of iron and sulfide from IscA to ferredoxin and formation of the [2Fe-2S] holoferredoxin. These results thus suggest that IscA is involved in ferredoxin cluster assembly and activation. This is an important function because a functional ferredoxin is required for maturation of other cellular Fe-S proteins.  相似文献   

7.
Two antioxidant proteins, SLL1621 and SLR1198, were captured in the cyanobacteria Synechocystis sp. PCC 6803 using thioredoxin affinity chromatography, which was first applied to the survey of thioredoxin target proteins in chloroplasts (Motohashi, K., Kondoh, A., Stumpp, M. T., and Hisabori, T. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 11224-11229). They are annotated as AhpC/TSA family protein (SLL1621) and antioxidant protein (SLR1198) in CyanoBase (Nakamura, Y., Kaneko, T., Hirosawa, M., Miyajima, N., and Tabata, S. (1998) Nucleic Acids Res. 26, 63-67). Based on sequence homology analysis SLL1621 and SLR1198 are categorized into type II peroxiredoxin and 1-Cys type peroxiredoxin, respectively. In vitro interaction between SLL1621 and thioredoxin was confirmed using the recombinant proteins expressed in Escherichia coli. Furthermore, we found that SLL1621 shows remarkable glutathione-dependent peroxidase activity. Disruption of the sll1621 gene had a dramatic effect on the viability of the cyanobacterial cells even under weak light conditions (50 micromol.m(-2).s(-1)), suggesting this peroxiredoxin is essential for this cyanobacterium. In contrast, although the peroxidase activity of SLR1198 was scarcely detected, disruption of the gene, slr1198, certainly affected the growth rate of the cells. The results indicate the physiological significance of two different peroxiredoxins as an anti-oxidative stress system in cyanobacteria.  相似文献   

8.
IscA was proposed to be involved in the ironsulfur cluster assembly encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In our previous study, the IscA from A. ferrooxidans was successfully expressed in Escherichia coli, and purified to be a [Fe4S4]-cluster-containing protein. Cys35, Cys99, and Cys101 were important residues in ligating with the [Fe4S4] cluster. In this study, Asp97 was found to be another ligand for the iron-sulfur cluster binding according to sitedirected mutagenesis results. Molecular modeling for the IscA also showed that Asp97 was a strong ligand with the [Fe4S4] cluster, which was in good agreement with the experimental results. Thus, the [Fe4S4] cluster in IscA from A. ferrooxidans was ligated by three cysteine residues and one aspartic acid.  相似文献   

9.
The chloroplast division machinery is composed of numerous proteins that assemble as a large complex to divide double‐membraned chloroplasts through binary fission. A key mediator of division‐complex formation is ARC6, a chloroplast inner envelope protein and evolutionary descendant of the cyanobacterial cell division protein Ftn2. ARC6 connects stromal and cytosolic contractile rings across the two membranes through interaction with an outer envelope protein within the intermembrane space (IMS). The ARC6 IMS region bears a structurally uncharacterized domain of unknown function, DUF4101, that is highly conserved among ARC6 and Ftn2 proteins. Here we report the crystal structure of this domain from Arabidopsis thaliana ARC6. The domain forms an α/β barrel open towards the outer envelope membrane but closed towards the inner envelope membrane. These findings provide new clues into how ARC6 and its homologs contribute to chloroplast and cyanobacterial cell division.  相似文献   

10.
It has been shown that the so-called scaffold proteins are vital in Fe-S cluster biosynthesis by providing an intermediate site for the assembly of Fe-S clusters. However, since no structural information on such scaffold proteins with bound Fe-S cluster intermediates is available, the structural basis of the core of Fe-S cluster biosynthesis remains poorly understood. Here we report the first Fe-S cluster-bound crystal structure of a scaffold protein, IscA, from Thermosynechococcus elongatus, which carries three strictly conserved cysteine residues. Surprisingly, one partially exposed [2Fe-2S] cluster is coordinated by two conformationally distinct IscA protomers, termed alpha and beta, with asymmetric cysteinyl ligation by Cys37, Cys101, Cys103 from alpha and Cys103 from beta. In the crystal, two alphabeta dimers form an unusual domain-swapped tetramer via central domains of beta protomers. Together with additional biochemical data supporting its physiologically relevant configuration, we propose that the unique asymmetric Fe-S cluster coordination and the resulting distinct conformational stabilities of the two IscA protomers are central to the function of IscA-type Fe-S cluster biosynthetic scaffold.  相似文献   

11.
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.  相似文献   

12.
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes. Previously, IscA was characterized as an alternative iron-sulfur cluster assembly scaffold, as purified IscA can host transient iron-sulfur clusters. However, recent studies indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU (Ding H., Clark, R. J., and Ding, B. (2004) J. Biol. Chem. 279, 37499-37504). To further elucidate the roles of IscA in the biogenesis of iron-sulfur clusters, we reevaluate the iron binding activity of IscA under physiologically relevant conditions. The results indicate that in the presence of the thioredoxin reductase system, Escherichia coli IscA binds iron with an iron association constant of 2.0 x 10(19) M(-1) in vitro. Whereas all three components (thioredoxin 1, thioredoxin reductase and NADPH) in the thioredoxin reductase system are essential for mediating the iron binding in IscA, only catalytic amounts of thioredoxin 1 and thioredoxin reductase are required. In contrast, IscU fails to bind iron in the presence of the thioredoxin reductase system, suggesting that the iron binding in IscA is specific. Nevertheless, the thioredoxin reductase system can promote the iron-sulfur cluster assembly in IscU in the presence of the iron-loaded IscA, cysteine desulfurase (IscS), and L-cysteine, demonstrating a physiologically relevant system for the biogenesis of iron-sulfur clusters. The results provide additional evidence for the hypothesis that IscA is capable of recruiting intracellular "free" iron and delivering the iron for the iron-sulfur cluster assembly in IscU.  相似文献   

13.
Cryptochrome (CRYs) proteins have been elucidated as the molecular basis for magnetoreception in Drosophila, and a putative magnetic receptor (named IscA1) protein may aslo be involved in sensing magnetic fields in Drosophila. However, whether IscA1 has a conserved role in diverse animals and functions in orientation during animal migration is unknown. Here we report on the cloning and sequencing of the IscA1 gene from Agrotis segetum, which encodes a predicted protein IscA1 that has 131 amino acids and two conserved iron-sulphur cluster binding domains. Multiple sequence alignment and phylogenetic analysis were used to show that IscA1 had a relatively high homology from species of Noctuoidea. Quantitative polymerase chain reaction showed that IscA1 was ubiquitously expressed in adult organs and, among all developmental stages, expression was higher in adults. When Agrotis segetum was exposed to 14?h light/10?h dark, IscA1 expression also showed daily oscillations, and constant light or dark disturbed these oscillations. IscA1 expression levels in a migratory population were higher than in a reared population and higher in a southward migratory population than in a northward. These findings suggest that the IscA1 gene in A. segetum might be associated with migration and provide a molecular basis for further study on the functions of IscA1 gene in magnetoreception and potential control of the turnip moth.  相似文献   

14.
Lu J  Yang J  Tan G  Ding H 《The Biochemical journal》2008,409(2):535-543
Biogenesis of iron-sulfur clusters requires a concerted delivery of iron and sulfur to target proteins. It is now clear that sulfur in iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. However, the specific iron donor for the iron-sulfur cluster assembly still remains elusive. Previous studies showed that IscA, a member of the iron-sulfur cluster assembly machinery in Escherichia coli, is a novel iron-binding protein, and that the iron-bound IscA can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU in vitro. However, genetic studies have indicated that IscA is not essential for the cell growth of E. coli. In the present paper, we report that SufA, an IscA paralogue in E. coli, may represent the redundant activity of IscA. Although deletion of IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA in E. coli results in a severe growth phenotype in minimal medium under aerobic growth conditions. Cell growth is restored when either IscA or SufA is re-introduced into the iscA-/sufA- double mutant, demonstrating further that either IscA or SufA is sufficient for their functions in vivo. Purified SufA, like IscA, is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU in the presence of a thioredoxin reductase system which emulates the intracellular redox potential. Site-directed mutagenesis studies show that the SufA/IscA variants that lose the specific iron-binding activity fail to restore the cell growth of the iscA-/sufA- double mutant. The results suggest that SufA and IscA may constitute the redundant cellular activities to recruit intracellular iron and deliver iron for the iron-sulfur cluster assembly in E. coli.  相似文献   

15.
IscA has been proposed to be a scaffold protein of the iron-sulfur cluster biosynthetic machinery. We have identified the IscA homolog to be localized to plastids, termed AtIscA-I, in Arabidopsis thaliana. The AtIscA-I protein was apparently constitutively expressed in all tissues analyzed in Arabidopsis. The AtIscA-I protein exists in the stroma as a soluble protein which tends to form a homo-dimer and can host a [2Fe-2S]-like cluster. Complete loss of the protein from plastids did not cause any significant defect either in normal plant growth or in biogenesis of major iron-sulfur proteins, indicating this protein is not essential or redundant for these functions. In contrast, loss of one of the three plastid-localized CnfU scaffold proteins, AtCnfU-V, caused significant reduction in the level of AtIscA-I. These data suggest that efficient biogenesis of AtIscA-I scaffold requires function of another essential scaffold protein CnfU.  相似文献   

16.
Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.  相似文献   

17.
The rice SLR1 (SLENDER RICE 1) gene encodes a DELLA protein that belongs to a subfamily of the GRAS protein superfamily and that functions as a repressor of gibberellin (GA) signaling. Based on the constitutive GA response phenotype of slr1 mutants, SLR1 has been thought to be the sole DELLA-type protein suppressing GA signals in rice. However, in rice genome databases we identified two sequences homologous to SLR1: SLR1-like1 and -2 (SLRL1 and -2). SLRL1 and SLRL2 contain regions with high similarity to the C-terminal conserved domains in SLR1, but lack the N-terminal conserved region of the DELLA proteins. The expression of SLRL1 was positively regulated by GA at the mRNA level and occurred preferentially in reproductive organs, whereas SLRL2 was moderately expressed in mature leaf organs and was not affected by GA. Transformation of SLRL1 into the slr1 mutant rescued the slender phenotype of this mutant. Moreover, overexpression of SLRL1 in normal rice plants induced a dwarf phenotype with an increased level of OsGA20ox2 gene expression and diminished the GA-induced shoot elongation, suggesting that SLRL1 acts as a repressor of GA signaling. Consistent with the fact that SLRL1 does not have a DELLA domain, which is essential for degradation of DELLA proteins, a level of SLRL1 protein was not degraded by application of gibberellic acid. However, the repressive activity of SLRL1 against GA signaling was much weaker than a truncated SLR1 lacking the DELLA domain. Based on these characteristics of SLRL1, the functional roles of SLRL1 in GA signaling in rice are discussed.  相似文献   

18.
Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1   总被引:14,自引:0,他引:14  
DELLA proteins are repressors of gibberellin signaling in plants. Our previous studies have indicated that gibberellin signaling is derepressed by SCF(GID2)-mediated proteolysis of the DELLA protein, SLENDER RICE1 (SLR1), in rice. In addition, the gibberellin-dependent increase of phosphorylated SLR1 in the loss-of-function gid2 mutant suggests that the SCF(GID2)-mediated degradation of SLR1 might be initiated by gibberellin-dependent phosphorylation. To confirm the role of phosphorylation of SLR1 in its gibberellin-dependent degradation, we revealed that SLR1 is phosphorylated on an N-terminal serine residue(s) within the DELLA/TVHYNP and polyS/T/V domain. However, gibberellin-induced phosphorylation in these regions was not observed in the gid2 mutant following the constitutive expression of SLR1 under the control of the rice actin1 promoter. Treatment with gibberellin induced both the phosphorylated and non-phosphorylated forms of SLR1 with similar induction kinetics in gid2 mutant cells. Both the phosphorylated and non-phosphorylated SLR1 proteins were degraded by gibberellin treatment with a similar half-life in the rice callus cells, and both proteins interacted with recombinant glutathione S-transferase (GST)-GID2. These results demonstrate that the phosphorylation of SLR1 is independent of its degradation and is dispensable for the interaction of SLR1 with the GID2/F-box protein.  相似文献   

19.
IscA/SufA proteins belong to complex protein machineries which are involved in iron-sulfur cluster biosynthesis. They are defined as scaffold proteins from which preassembled clusters are transferred to target apoproteins. The experiments described here demonstrate that the transfer reaction proceeds in two observable steps: a first fast one leading to a protein–protein complex between the cluster donor (SufA/IscA) and the acceptor (biotin synthase), and a slow one consisting of cluster transfer leading to the apoform of the scaffold protein and the holoform of the target protein. Mutation of cysteines in the acceptor protein specifically inhibits the second step of the reaction, showing that these cysteines are involved in the cluster transfer mechanism but not in complex formation. No cluster transfer from IscA to IscU, another scaffold of the isc operon, could be observed, whereas IscU was shown to be an efficient cluster source for cluster assembly in IscA. Implications of these results are discussed.Abbreviations AdoMet S-adenosylmethionine - APS adenosine-5-phosphosulfate - BioB biotin synthase - DAF deazaflavin - DTB dethiobiotin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - hisIscU/A six histidine residues at the N-terminus of IscU/A - PCR polymerase chain reaction - PLP pyridoxal 5-phosphate - SufAhis six histidine residues at the C-terminus of SufA  相似文献   

20.
Among the iron‐sulphur cluster assembly proteins encoded by gene cluster iscSUAhscBAfdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron‐sulphur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe‐4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron‐sulphur cluster biogenesis. Here we report that among the iron‐sulphur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) centre in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA‐mediated [4Fe‐4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe‐4S] clusters in dehydratases, but also block the [4Fe‐4S] cluster assembly in proteins by targeting IscA in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号