首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human alpha(2)-macroglobulin-proteinase complexes bind to their receptor, the low density lipoprotein receptor-related protein (LRP), through a discrete 138-residue C-terminal receptor binding domain (RBD), which also binds to the beta-amyloid peptide. We have used NMR spectroscopy on recombinantly expressed uniformly (13)C/(15)N-labeled human RBD to determine its three-dimensional structure in solution. Human RBD is a sandwich of two antiparallel beta-sheets, one four-strand and one five-strand, and also contains one alpha-helix of 2.5 turns and an additional 1-turn helical region. The principal alpha-helix contains two lysine residues on the outer face that are known to be essential for receptor binding. A calcium binding site (K(d) approximately 11 mM) is present in the loop region at one end of the beta-sandwich. Calcium binding principally affects this loop region and does not significantly perturb the stable core structure of the domain. The structure and NMR assignments will enable us to examine in solution specific binding of RBD to domains of the receptor and to beta-amyloid peptide.  相似文献   

2.
The tertiary structure of a unique C5a receptor antagonist was determined by two-dimensional NMR spectroscopy. The core domain of this 8-kDa antagonist exists as an antiparallel helical bundle, similar to recombinant human (rh)-C5a. However, unlike C5a, the antagonist's C terminus was found to be conformationally restricted along a groove between helices one and four in the core domain. This conformational restriction situates C-terminal D-Arg 75 in a wedge between core residues Arg 46 and His 15. Correlation of the antagonist's tertiary structure with point mutation analysis revealed the formation of a positively charged contiguous contact surface comprised of D-Arg 75, Arg 46, Lys 49, and His 15. The significance of this surface in generating antagonist properties implies a single binding site with the C5a receptor and provides a structural template for drug design.  相似文献   

3.
We have used NMR methods to determine the structure of the calcium complex of complement-like repeat 3 (CR3) from the low density lipoprotein receptor-related protein (LRP) and to examine its specific interaction with the receptor binding domain of human alpha(2)-macroglobulin. CR3 is one of eight related repeats that constitute a major ligand binding region of LRP. The structure is very similar in overall fold to homologous complement-like repeat CR8 from LRP and complement-like repeats LB1, LB2, and LB5 from the low density lipoprotein receptor and contains a short two-strand antiparallel beta-sheet, a one turn alpha-helix, and a high affinity calcium site with coordination from four carboxyls and two backbone carbonyls. The surface electrostatics and topography are, however, quite distinct from each of these other repeats. Two-dimensional (1)H,(15)N-heteronuclear single quantum coherence spectra provide evidence for a specific, though relatively weak (K(d) approximately 140 microM), interaction between CR3 and human alpha2-macroglobulin receptor binding domain that involves a contiguous patch of surface residues in the central region of CR3. This specific interaction is consistent with a mode of LRP binding to ligands that uses contributions from more than one domain to generate a wide array of different binding sites, each with overall high affinity.  相似文献   

4.
alpha2-Macroglobulin (alpha2M) regulates cell physiology by binding to cellular receptors; however, residues that contribute to receptor-binding have not been elucidated in the full-length protein. In alpha2M fragments, expressed in bacteria, Lys(1370) and Lys(1374) are critical for binding to the low density lipoprotein receptor-related protein-1 (LRP-1) and a distinct alpha2M-signaling receptor. We expressed full-length recombinant human alpha2M (r(alpha)2M) and mutants in which Lys(1370) or Lys(1374) was converted to alanine in K-562 cells. The r(alpha)2M species demonstrated intact structure and function, as determined by subunit size, intersubunit disulfide bonds, reaction with trypsin or methylamine, and ability to undergo conformational change. Binding of transforming growth factor-beta1 was unaltered. Mutation of Lys(1370) almost entirely inhibited specific binding of methylamine-activated r(alpha)2M to RAW 264.7 cells. Mutation of Lys(1374) had no effect. Binding of r(alpha)2M to RAW 264.7 cells was blocked by receptor-associated protein, indicating an essential role for LRP-1. These studies demonstrate that a single mutation in full-length r(alpha)2M is sufficient to block binding to LRP-1.  相似文献   

5.
The hnRNP C proteins are among the most abundant and avid pre-mRNA-binding proteins and they contain a consensus sequence RNA-binding domain (RBD) that is found in a large number of RNA-binding proteins. The interaction of the RBD of the hnRNP C proteins with an RNA oligonucleotide [r(U)8] was monitored by nuclear magnetic resonance (NMR). 15N and 13C/15N-labelled hnRNP C protein RBD was mixed with r(U)8 and one- and two-dimensional (1D and 2D) NMR spectra were recorded in a titration experiment. NMR studies of the uncomplexed 93 amino acid hnRNP C RBD (Wittekind et al., 1992) have shown that it has a compact folded structure (beta alpha beta beta alpha beta), which is typical for the RBD of this family of proteins and which is comprised of a four-stranded antiparallel beta-sheet, two alpha-helices and relatively unstructured amino- and carboxy-terminal regions. Sequential assignments of the polypeptide main-chain atoms of the hnRNP C RBD-r(U)8 complex revealed that these typical structural features are maintained in the complex, but significant perturbations of the chemical shifts of amide group atoms occur in a large number of residues. Most of these residues are in the beta-sheet region and especially in the terminal regions of the RBD. In contrast; chemical shifts of the residues of the well conserved alpha-helices, with the exception of Lys30, are not significantly perturbed. These observations localize the candidate residues of the RBD that are involved in the interaction with the RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
RNA binding domains (RBDs) are members of a large family of proteins that share minimal sequence conservation but adopt an alpha beta sandwich global fold. Defining the contributions of specific amino acids to RBD structure and RNA binding is critical to understanding the functions of these proteins. In these experiments with the human U1A N-terminal RNA binding domain (RBD1), the contributions from each of its four tyrosines to protein structure, stability, and RNA binding were measured. Each tyrosine was substituted with phenylalanine and one other selected residue, and the resulting proteins were characterized by chemical denaturation to measure their unfolding free energy, by binding free energies to the wild-type RNA hairpin, and by 19F NMR to probe for structural changes. Features of the protein identified in these experiments include a possible tyrosine/lysine contact in an alpha-helix, which may be an example of an energetically favorable aromatic/amino side chain interaction. One long loop of the protein, which shows unusual 15N backbone and tyrosine side-chain dynamics, is implicated in protein:protein association. The diverse interactions of the four tyrosine residues in the organization of RBD1 illustrate how each member of this family of proteins will have unique molecular details that contribute to function.  相似文献   

7.
The low-density lipoprotein receptor-related protein (LRP) is a large surface receptor that mediates binding and internalization of a large number of structurally and functionally unrelated ligands. The ligand binding sites are located in clusters of complement-type repeats (CR), where the general absence of mutual binding competition suggests that different ligands map to distinct sites. Binding of alpha(2)-macroglobulin-protease complexes to the LRP is mediated by the receptor binding domain (RBD) of alpha(2)-macroglobulin (alpha(2)M). To determine the major binding epitope(s) in the LRP, we generated a complete set of tandem CR proteins spanning the second cluster of CR domains, and identified a binding site for alpha(2)M in the N-terminal part of the cluster comprising CR3-CR6, using ligand blotting and surface plasmon resonance (SPR) analysis. The specific site involved in alpha(2)M recognition resides in the fourth CR domain, CR4, whereas another site is identified in CR5. An acidic epitope in CR4 is identified as important for binding alpha(2)M by mutagenesis and SPR analysis. The formation of the complex between the rat alpha(1)-macroglobulin RBD and CR domain pairs is characterized by analytical size-exclusion chromatography, which demonstrates a sufficiently strong interaction between the alpha(1)M RBD and CR34 or CR45 for the isolation of a complex.  相似文献   

8.
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; "active" Lys have a pK of 8.9, while "normal" Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.  相似文献   

9.
BACKGROUND: After activation, small GTPases such as Ras transfer the incoming signal to effectors by specifically interacting with the binding domain of these proteins. Structural details of the binding domain of different effectors determine which pathway is predominantly activated. Byr2 from fission yeast is a functional homolog of Raf, which is the direct downstream target of Ras in mammalians that initiates a protein kinase cascade. The amino acid sequence of Byr2's Ras binding domain is only weakly related to that of Raf, and Byr2's three-dimensional structure is unknown. RESULTS: We have solved the 3D structure of the Ras binding domain of Byr2 (Byr2RBD) from Schizosaccharomyces pombe in solution. The structure consists of three alpha helices and a mixed five-stranded beta pleated sheet arranged in the topology betabetaalphabetabetaalphabetaalpha with the first seven canonic secondary structure elements forming a ubiquitin superfold. 15N-(1)H-TROSY-HSQC spectroscopy of the complex of Byr2RBD with Ras*Mg(2+)*GppNHp reveals that the first and second beta strands and the first alpha helix of Byr2 are mainly involved in the protein-protein interaction as observed in other Ras binding domains. Although the putative interaction site of H-Ras from human and Ras1 from S. pombe are identical in sequence, binding to Byr2 leads to small but significant differences in the NMR spectra, indicating a slightly different binding mode. CONCLUSIONS: The ubiquitin superfold appears to be the general structural motif for Ras binding domains even in cases with vanishing sequence identity. However, details of the 3D structure and the interacting interface are different, thereby determining the specifity of the recognition of Ras and Ras-related proteins.  相似文献   

10.
Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.  相似文献   

11.
Ubiquitin-conjugating enzymes (Ubc) are involved in ubiquitination of proteins in the protein degradation pathway of eukaryotic cells. Ubc transfers the ubiquitin (Ub) molecules to target proteins by forming a thioester bond between their active site cysteine residue and the C-terminal glycine residue of ubiquitin. Here, we report on the NMR assignment and secondary structure of class I human ubiquitin-conjugating enzyme 2b (HsUbc2b). Chemical shift perturbation studies allowed us to map the contact area and binding interface between ubiquitin and HsUbc2b by1H-15N HSQC NMR spectroscopy. The serine mutant of the active site Cys88 of HsUbc2b was employed to obtain a relatively stable covalent ubiquitin complex of HsUbc2b(C88S). Changes in chemical shifts of amide protons and nitrogen atoms induced by the formation of the covalent complex were measured by preparing two segmentally labeled complexes with either ubiquitin or HsUbc2b(C88S)15N-labeled. In ubiquitin, the interaction is primarily sensed by the C-terminal segment Val70 - Gly76, and residues Lys48 and Gln49. The surface area on ubiquitin, as defined by these residues, overlaps partially with the presumed binding site with ubiquitin-activating enzyme (E1). In HsUbc2b, most of the affected residues cluster in the vicinity of the active site, namely, around the active site Cys88 itself, the second alpha-helix, and the flexible loop which connects helices alpha2 and alpha3 and which is adjacent to the active site. An additional site on HsUbc2b for a weak interaction with ubiquitin could be detected in a titration study where the two proteins were not covalently linked. This site is located on the backside of HsUbc2b opposite to the active site and is part of the beta-sheet. The covalent and non-covalent interaction sites are clearly separated on the HsUbc2b surface, while no such clear-cut segregation of the interaction area was observed on ubiquitin.  相似文献   

12.
The hnRNP C1 and C2 proteins are abundant nuclear proteins that bind avidly to heterogeneous nuclear RNAs (hnRNAs) and appear to be involved with pre-mRNA processing. The RNA-binding activity of the hnRNP C proteins is contained in the amino-terminal 94 amino acid RNA-binding domain (RBD) that is identical for these two proteins. We have obtained the 1H, 13C, and 15N NMR assignments for the RBD of the human hnRNP C proteins. The assignment process was facilitated by extensive utilization of three- and four-dimensional heteronuclear-edited spectra. Sequential assignments of the backbone resonances were made using a combination of 15N-edited 3D NOESY-HMQC, 3D TOCSY-HMQC, and 3D TOCSY-NOESY-HSQC as well as 3D HNCA, HNCO, and HCACO spectra. Side-chain resonances were assigned using 3D HCCH-COSY and 3D HCH-TOCSY spectra. Four-dimensional 13C/13C-edited NOESY and 13C/15N-edited NOESY experiments were used to unambigously resolve NOEs. The overall global folding pattern was established by calculating a set of preliminary structures using constraints derived from the sequential NOEs and a small number of long-range NOEs. The beta alpha beta-beta alpha beta domain structure exhibits an antiparallel beta-sheet with the conserved RNP 1 and RNP 2 sequences [Dreyfuss et al. (1988) Trends Biochem. Sci. 13, 86-91] located adjacent to one another as the two inner strands of the beta-sheet.  相似文献   

13.
To identify a receptor binding site of human interleukin-6 (IL-6), we created a library of IL-6 variants with single amino acid substitutions in the last 15 residues (171-185) in the COOH terminus of IL-6. Twenty-seven IL-6 variants were tested for biological activity on a human hepatoma and a mouse hybridoma cell line. Most variants were additionally tested in a receptor binding assay using a human myeloma cell line. Several single amino acid substitutions in the COOH terminus of IL-6 were found to decrease biological activity significantly. This is especially seen in variants with amino acid substitutions that alter the postulated amphipathical alpha-helix structure between residues 178 and 183. The two highly conserved Arg residues at positions 180 and 183 seem to play a very important role in biological activity. The loss of biological activity in all inactive variants is completely paralleled by a decrease of IL-6 receptor binding, as determined by competition binding experiments. One mutant (Leu171) displayed a higher activity on human cells and a higher binding affinity to the receptor and can be considered an IL-6 agonist. It is concluded that the amphipathical alpha-helix structure in the COOH terminus of IL-6 is critical for ligand receptor interaction. Furthermore, the region between residues Ser178 and Arg183 (Ser-Leu-Arg-Ala-X-Arg) is identified as a receptor binding site in the COOH terminus of human IL-6.  相似文献   

14.
Gastric inhibitory polypeptide (GIP, or glucose-dependent insulinotropic polypeptide) is a 42-amino acid incretin hormone moderating glucose-induced insulin secretion. Antidiabetic therapy based on GIP holds great promise because of the fact that its insulinotropic action is highly dependent on the level of glucose, overcoming the sideeffects of hypoglycemia associated with the current therapy of Type 2 diabetes. The truncated peptide, GIP(1-30)NH2, has the same activity as the full length native peptide. We have studied the structure of GIP(1-30)NH2 and built a model of its G-protein coupled receptor (GPCR). The structure of GIP(1-30)NH2 in DMSO-d6 and H2O has been studied using 2D NMR (total correlation spectroscopy (TOCSY), nuclear overhauser effect spectroscopy (NOESY), double quantum filtered-COSY (DQF-COSY), 13C-heteronuclear single quantum correlation (HSQC) experiments, and its conformation built by MD simulations with the NMR data as constraints. The peptide in DMSO-d6 exhibits an alpha-helix between residues Ile12 and Lys30 with a discontinuity at residues Gln19 and Gln20. In H2O, the alpha-helix starts at Ile7, breaks off at Gln19, and then continues right through to Lys30. GIP(1-30)NH2 has all the structural features of peptides belonging to family B1 GPCRs, which are characterized by a coil at the N-terminal and a long C-terminal alpha-helix with or without a break. A model of the seven transmembrane (TM) helices of the GIP receptor (GIPR) has been built on the principles of comparative protein modeling, using the crystal structure of bovine rhodopsin as a template. The N-terminal domain of GIPR has been constructed from the NMR structure of the N-terminal of corticoptropin releasing factor receptor (CRFR), a family B1 GCPR. The intra and extra cellular loops and the C-terminal have been modeled from fragments retrieved from the PDB. On the basis of the experimental data available for some members of family B1 GPCRs, four pairs of constraints between GIP(1-30)NH2 and its receptor were used in the FTDOCK program, to build the complete model of the GIP(1-30)NH2:GIPR complex. The model can rationalize the various experimental observations including the potency of the truncated GIP peptide. This work is the first complete model at the atomic level of GIP(1-30)NH2 and of the complex with its GPCR.  相似文献   

15.
Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor.  相似文献   

16.
Samples of staphylococcal nuclease H124L (cloned protein overproduced in Escherichia coli whose sequence is identical with that of the nuclease isolated from the V8 strain of Staphylococcus aureus) were labeled uniformly with carbon-13 (26% ul 13C), uniformly with nitrogen-15 (95% ul 15N), and specifically by incorporating nitrogen-15-labeled leucine ([98% 15N]Leu) or carbon-13-labeled lysine ([26% ul 13C]Lys), arginine ([26% ul 13C]Arg), or methionine ([26% ul 13C]Met). Solutions of the ternary complexes of these analogues (nuclease H124L-pdTp-Ca2+) at pH 5.1 (H2O) or pH* 5.5 (2H2O) at 45 degrees C were analyzed as appropriate to the labeling pattern by multinuclear two-dimensional (2D) NMR experiments at spectrometer fields of 14.09 and 11.74 T: 1H-13C single-bond correlation (1H[13C]SBC); 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE); 1H-13C single-bond correlation with Hartmann-Hahn relay (1H-[13C]SBC-HH); 1H-13C multiple-bond correlation (1H[13C]MBC); 1H-15N single-bond correlation (1H-[15N]SBC); 1H-15N single-bond correlation with NOE relay (1H[15N]SBC-NOE). The results have assisted in spin system assignments and in identification of secondary structural elements. Nuclear Overhauser enhancements (NOE's) characteristic of antiparallel beta-sheet (d alpha alpha NOE's) were observed in the 1H [13C]-SBC-NOE spectrum of the nuclease ternary complex labeled uniformly with 13C. NOE's characteristic of alpha-helix (dNN NOE's) were observed in the 1H[15N]SBC-NOE spectrum of the complex prepared from protein labeled uniformly with 15N. The assignments obtained from these multinuclear NMR studies have confirmed and extended assignments based on 1H[1H] 2D NMR experiments [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry (preceding paper in this issue)].  相似文献   

17.
Deep S  Walker KP  Shu Z  Hinck AP 《Biochemistry》2003,42(34):10126-10139
Isoforms of transforming growth factor beta (TGFbeta) are 25 kDa homodimeric polypeptides that signal by binding and bringing together two related, functionally distinct cell surface receptors designated as TbetaR1 and TbetaR2. Here, we report the solution structure of the 13.8 kDa extracellular domain of human TbetaR2 (ecTbetaR2) as calculated from N(N)-H(N), C(alpha)-H(alpha), and C(alpha)-C(O) residual dipolar coupling restraints in conjunction with NOE distance, dihedral angle, and scalar coupling restraints. Comparison of the free ecTbetaR2 solution structure with the TGFbeta3-bound ecTbetaR2 crystal structure reveals backbone conformations that superimpose with RMSDs of 1.0 A over the regions of regular secondary structure and 1.4 A overall. The differences in structure fall mainly in loop regions that are either poorly defined by the available NMR data or are involved in crystal contacts. The noted similarities between the NMR structure of the free form and the crystal structure of the TGFbeta-bound form are also consistent with the close correspondence, 0.16 A RMSD for regions of secondary structure and 0.51 A RMSD overall, for the crystal structure of free ecTbetaR2 as compared to the crystal structure of TGFbeta3-bound ecTbetaR2. Despite the apparent similarities between the free and the bound forms, there appears to be small but significant differences in structure involving the interfacial contact region of the receptor. Measurements of backbone (15)N relaxation times and interpretation of these by the model-free formalism with axial diffusional anisotropy further reveal significant ms to micros time scale motions centered about two of the conserved disulfide bonds and in several residues that comprise the TGFbeta binding surface. Together, these observations indicate that binding likely occurs through a mechanism with a small component of induced fit character, whereby flexibility within the receptor facilitates the transition to the TGFbeta-bound state.  相似文献   

18.
The leukocyte integrin alpha(M)beta(2) is a highly promiscuous leukocyte receptor capable of binding a multitude of unrelated ligands. To understand the molecular basis for the broad ligand recognition of alpha(M)beta(2), the inter-integrin chimera was created. In the chimeric integrin, the betad-alpha5 loop-alpha5 helix segment comprised of residues Lys(245)-Arg(261) from the alpha(M)I domain of alpha(M)beta(2) was inserted into the framework of alpha(L)beta(2). The construct was expressed in HEK 293 cells, and the ability of generated cells to adhere to fibrinogen and its derivatives was characterized first. Grafting the alpha(M)(Lys(245)-Arg(261)) sequence converted alpha(L)beta(2) into a fibrinogen-binding protein capable of mediating efficient and specific adhesion similar to that of wild-type alpha(M)beta(2). Verifying a switch in the binding specificity of alpha(L)beta(2), the chimeric receptor became competent to support cell migration to fibrinogen. Mutations at positions Phe(246), Asp(254), and Pro(257) within Lys(245)-Arg(261) of alpha(M)beta(2) produced significant decreases in cell adhesion, illustrating the critical role of these residues in ligand binding. The insertion of alpha(M)(Lys(245)-Arg(261)) imparted to the chimeric integrin the ability to recognize many typical alpha(M)beta(2) protein ligands. Furthermore, cells expressing the chimeric receptor, but not alpha(L)beta(2), were able to stick to uncoated plastic, which represents the hallmark of wild-type alpha(M)beta(2). These results suggest that alpha(M)(Lys(245)-Arg(261)) serves as a consensus binding site for interaction with a variety of distinct molecules and, thus, may define the degenerate recognition properties inherent to alpha(M)beta(2).  相似文献   

19.
Interleukin (IL)-15 is a member of the small four alpha-helix bundle family of cytokines. IL-15 was discovered by its ability to mimic IL-2-mediated T-cell proliferation. Both cytokines share the beta and gamma receptor chains of the IL-2 receptor for signal transduction. However, in addition, they target specific alpha chain receptors IL-15Ralpha and IL-2Ralpha, respectively. The exceptionally high affinity binding of IL-15 to IL-15Ralpha is mediated by its sushi domain. Here we present the solution structure of the IL-15Ralpha sushi domain solved by NMR spectroscopy and a model of its complex with IL-15. The model shows that, rather than the familiar hydrophobic forces dominating the interaction interface between cytokines and their cognate receptors, the interaction between the IL-15 and IL-15Ralpha complex involves a large network of ionic interactions. This type of interaction explains the exceptionally high affinity of the IL-15.IL-15Ralpha complex, which is essential for the biological effects of this important cytokine and which is not observed in other cytokine/cytokine receptor complexes.  相似文献   

20.
Won HS  Yamazaki T  Lee TW  Yoon MK  Park SH  Kyogoku Y  Lee BJ 《Biochemistry》2000,39(45):13953-13962
Cyclic AMP receptor protein (CRP) plays a key role in the regulation of more than 150 genes. CRP is allosterically activated by cyclic AMP and binds to specific DNA sites. A structural understanding of this allosteric conformational change, which is essential for its function, is still lacking because the structure of apo-CRP has not been solved. Therefore, we performed various NMR experiments to obtain apo-CRP structural data. The secondary structure of apo-CRP was determined by analyses of the NOE connectivities, the amide proton exchange rates, and the (1)H-(15)N steady-state NOE values. A combination of the CSI-method and TALOS prediction was also used to supplement the determination of the secondary structure of apo-CRP. This secondary structure of apo-CRP was compared with the known structure of cyclic AMP-bound CRP. The results suggest that the allosteric conformational change of CRP caused by cyclic AMP binding involves subunit realignment and domain rearrangement, resulting in the exposure of helix F onto the surface of the protein. Additionally, the results of the one-dimensional [(13)C]carbonyl NMR experiments show that the conformational change of CRP caused by the binding of cyclic GMP, an analogue of cyclic AMP, is different from that caused by cyclic AMP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号