首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dipeptidase, dehydropeptidase I (EC 3.4.13.11), was purified to homogeneity from rat lung, rat kidney, and hog kidney. Analysis of physical parameters (subunit molecular weights, Km values for glycyldehydrophenylalanine, Ki values for dehydropeptidase I inhibitors, and immunoreactivity) showed the rat dipeptidases to be similar to each other but different from the hog dipeptidase. However, all three enzymes hydrolyzed imipenem and converted leukotriene D4 to leukotriene E4, and these activities were inhibited by cilastatin.  相似文献   

2.
Purified human renal dipeptidase was shown to exhibit no detectable activity against substrates that are characteristic for other known mammalian peptidases. The enzymic activities that were assayed were: aminopeptidase A, aminopeptidase B, aminopeptidase M, aminopeptidase P, and tripeptidase. A quantitative assay for renal dipeptidase was developed which measures the rate of release of glycine from glycylpeptides by pre-column derivatization of the amino acid with phenylisothiocyanate followed by high-performance liquid chromatography. The ratio of Vmax/Km for a series of dipeptides was used as an index of the enzyme's preference for substrates. According to the data obtained, the enzyme prefers that a bulky, hydrophobic group of the dipeptide be located at the N-terminal position. This suggests that the substrate-binding site of the enzyme may provide a hydrophobic pocket to accommodate the hydrophobic moiety at the N-terminus of the dipeptide. The unsaturated dipeptide substrate, glycyldehydrophenylalanine, was employed in spectrophotometric assays to provide kinetic analyses of enzymic inhibition. The inhibitory effect of dithiothreitol was immediate, and the kinetic data indicated reversible, competitive inhibition. These results suggest that the inhibitor competes with substrate for a coordination site of zinc within the active site of the enzyme. The reaction of renal dipeptidase with the transition-state peptide analog, bestatin, was time dependent, and velocity measurements were made after the inhibitor had been incubated with the enzyme until constant rates were observed. These steady-state rate measurements, made following preincubation of enzyme with inhibitor, were employed to show that bestatin caused apparent non-competitive inhibition of the enzyme. The inhibitory effect of the beta-lactam inhibitor, cilastatin, upon the oligomeric dipeptidase was shown to be competitive. Graphical analysis of this inhibition indicated that the subunits of the enzyme react independently during enzymic catalysis and that the catalytic event is not influenced by cooperativity between sites on the subunits. The conversion of leukotriene D4 to leukotriene E4 in the presence of human renal dipeptidase was demonstrated by HPLC procedures. This bioconversion reaction was quantitated by derivatizing the glycine produced by cleavage of the cysteinylglycine bond and isolating this derivative as a function of time. The relationship between the purified enzyme concentration and enzyme activity against leukotriene D4 was shown to be linear over the enzyme concentration range of 1 ng through 69 ng in this assay.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Bioconversion of leukotriene D4 by lung dipeptidase   总被引:1,自引:0,他引:1  
Sheep lung dipeptidase was released from a lung membrane preparation by digestion with phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis. The total enzyme activity released into the supernatant was 4- to 5-fold greater than that measured in the intact membrane prior to solubilization. The release of the peptidase from the membrane by this treatment is typical of proteins anchored to the lipid bilayer by a covalent attachment of phosphatidylinositol via a C-terminal glycolipid extension. The solubilized lung peptidase was further purified by ammonium sulfate fractionation followed by affinity chromatography and high-pressure liquid chromatography. A linear relationship between log molecular weight and elution volume for proteins of known molecular weight was established using a Toya Soda TSK 3000 high-pressure liquid chromatography column, and the molecular weight of the lung dipeptidase was estimated at 105,000. The peptidase activity against glycyldehydrophenylalanine of the purified enzyme co-chromatographed in high-pressure liquid chromatography with the activity that converted leukotriene D4 to leukotriene E4. In kinetic studies using leukotriene D4 as substrate, the relationship between the rate of hydrolysis and enzyme concentration was shown to be linear over the range 20 ng to 98 ng enzyme. Values of Km and Vmax for the dipeptidase using leukotriene D4 as substrate were 43 +/- 6 microM and 11,200 +/- 400 nmol/min per mg, respectively. Inhibition of the conversion of leukotriene D4 to leukotriene E4 was observed with a series of inhibitory agents. Cilastatin, bestatin and chloracetyldehydrophenylalanine were all effective at the micromolar level with cilastatin proving to be the most effective inhibitor. Dithiothreitol was effective within the millimolar range.  相似文献   

4.
Inflammatory responses to infection and injury must be restrained and negatively regulated to minimize damage to host tissue. One proposed mechanism involves enzymatic inactivation of the pro-inflammatory mediator leukotriene B4, but it is difficult to dissect the roles of various metabolic enzymes and pathways. A primary candidate for a regulatory pathway is omega oxidation of leukotriene B4 in neutrophils, presumptively by CYP4F3A in humans and CYP4F18 in mice. This pathway generates ω, ω-1, and ω-2 hydroxylated products of leukotriene B4, depending on species. We created mouse models targeting exons 8 and 9 of the Cyp4f18 allele that allows both conventional and conditional knockouts of Cyp4f18. Neutrophils from wild-type mice convert leukotriene B4 to 19-hydroxy leukotriene B4, and to a lesser extent 18-hydroxy leukotriene B4, whereas these products were not detected in neutrophils from conventional Cyp4f18 knockouts. A mouse model of renal ischemia–reperfusion injury was used to investigate the consequences of loss of CYP4F18 in vivo. There were no significant changes in infiltration of neutrophils and other leukocytes into kidney tissue as determined by flow cytometry and immunohistochemistry, or renal injury as assessed by histological scoring and measurement of blood urea nitrogen. It is concluded that CYP4F18 is necessary for omega oxidation of leukotriene B4 in neutrophils, and is not compensated by other CYP enzymes, but loss of this metabolic pathway is not sufficient to impact inflammation and injury following renal ischemia–reperfusion in mice.  相似文献   

5.
Characterization of dehydropeptidase I in the rat lung   总被引:1,自引:0,他引:1  
The activity of dehydropeptidase I in rat tissues decreases in the order of lung greater than kidney greater than liver-spleen greater than other tissues, while aminopeptidase activity is high in the kidney, and lower in the lung than in other tissues. Dehydropeptidase I was solubilized from the membrane fraction of rat lung by treatment with papain and purified by DEAE-cellulose column chromatography, affinity chromatography on concanavalin-A-Sepharose and high-performance liquid chromatography gel filtration. The purified preparation was found to be homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The relative molecular mass was estimated to be 150,000 by gel filtration, comprising a homodimer of two 80,000-Mr subunits. The enzyme activity was inhibited by cilastatin, o-phenanthroline and ATP. This enzyme catalyzed the hydrolysis of S(substituent)-L-cysteinyl-glycine adducts such as L-cystinyl-bis(glycine) and N-ethylmaleimide-S-L-cysteinyl-glycine, as well as the conversion of leukotriene D4 to E4. Furthermore it catalyzed a hydrolytic splitting of L-Leu-L-Leu, but not S-benzyl-L-cysteine p-nitroanilide, which is a good substrate for aminopeptidase. Our enzyme preparation was immunologically identical to the rat renal dehydropeptidase I. The physiological significance of the pulmonary dehydropeptidase I on the metabolism of glutathione and its adducts is discussed.  相似文献   

6.
The actions of leukotrienes C4 and D4 in the porcine renal vascular bed   总被引:1,自引:0,他引:1  
The kidney of anaesthetised pigs was perfused in situ with carotid arterial blood. Renal blood flow and perfusion pressure were recorded. Close intra-arterial injection of leukotriene (LT) C4, D4 or noradrenaline (NA) caused a dose-related increase in vascular resistance. Both LTs were more active than NA by one to two orders of magnitude. Systemically-administered indomethacin potentiated the effect of all three agonists. Incubation of renal artery tissue with calcium ionophore A23187 in the presence of indomethacin resulted in the generation of LT-like material which, when assayed on guinea-pig ileum, was indistinguishable from LTD4. The results show that pig renal vessels produce LT-like material and suggest that the potent vasoconstriction induced by exogenous NA and LTs is modulated in vivo by a vasodilator cyclo-oxygenase product.  相似文献   

7.
Recombinant mouse leukotriene A4 hydrolase was expressed in Escherichia coli as a fusion protein with ten additional amino acids at the amino terminus and was purified to apparent homogeneity by means of precipitation, anion exchange, hydrophobic interaction and chromatofocusing chromatographies. By atomic absorption spectrometry, the enzyme was shown to contain one mol of zinc/mol of enzyme. Apparent kinetic constants (Km and Vmax) for the conversion of leukotriene A4 to leukotriene B4 (at 0 degree C, pH 8) were 5 microM and 900 nmol/mg per min, respectively. The purified enzyme also exhibited significant peptidase activity towards the synthetic amide alanine-4-nitroanilide. Km and Vmax for this reaction (at 37 degrees C, pH 8) were 680 microM and 365 nmol/mg per min, respectively. Apo-leukotriene A4 hydrolase, prepared by treating the enzyme with 1,10-phenanthroline, was virtually inactive with respect to both enzymatic activities, but could be reactivated by addition of stoichiometric amounts of zinc or cobalt. Exposure of the enzyme to leukotriene A4 resulted in a dose-dependent inactivation of both enzyme activities.  相似文献   

8.
Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril   总被引:3,自引:0,他引:3  
Captopril ((2S)-1-(3-mercapto-2-methyl-propionyl)-L-proline) inhibited the bifunctional, Zn(2+)-containing enzyme leukotriene A4 hydrolase/aminopeptidase reversibly and competitively with Ki = 6.0 microM for leukotriene B4 formation and Ki = 60 nM for L-lysine-p-nitroanilide hydrolysis at pH 8. Inhibition was independent of pH between pH 7 and 8, the optimum range for each catalytic activity. Half-maximal inhibition of leukotriene B4 formation by intact erythrocytes and neutrophils required 50 and 88 microM captopril, respectively. In neutrophils and platelets neither 5(S)-hydroxyeicosatetraenoic acid, 12(S)-hydroxyeicosatetraenoic acid, nor leukotriene C4 formation were reduced, indicating selective inhibition of leukotriene A4 hydrolase/aminopeptidase, not 5-lipoxygenase, 12-lipoxygenase, or leukotriene C4 synthase. In whole blood, captopril inhibited leukotriene B4 formation with an accompanying redistribution of substrate toward formation of cysteinyl leukotrienes. The decrease in leukotriene B4 was more substantial than the corresponding increase in cysteinyl leukotrienes suggesting that nonenzymatic hydration predominates over transcellular metabolism of leukotriene A4 by platelets during selective inhibition of leukotriene A4 hydrolase. Enalapril dicarboxylic acid and Glu-Trp-Pro-Arg-ProGln-Ile-Pro-Pro which inhibit angiotensin-converting enzyme: angiotensin I, bradykinin, and N-[3-(2-furyl)acryloyl]Phe-Gly-Gly which are substrates; and chloride ions which activate angiotensin-converting enzyme did not modulate leukotriene A4 hydrolase/aminopeptidase activity. The results indicate that: (i) the sulfhydryl group of captopril is an important determinant for inhibition of leukotriene A4 hydrolase/aminopeptidase, probably by binding to an active site Zn2+; (ii) aminopeptidase and leukotriene A4 hydrolase display differential susceptibility to inhibition; (iii) there is minimal functional similarity between angiotensin-converting enzyme (peptidyl dipeptidase) and leukotriene A4 hydrolase/aminopeptidase; (iv) captopril may be a useful prototype to identify more potent and selective leukotriene A4 hydrolase inhibitors.  相似文献   

9.
Human renal dipeptidase is a membrane-bound glycoprotein hydrolyzing dipeptides and is involved in hydrolytic metabolism of penem and carbapenem beta-lactam antibiotics. The crystal structures of the saccharide-trimmed enzyme are determined as unliganded and inhibitor-liganded forms. They are informative for designing new antibiotics that are not hydrolyzed by this enzyme. The active site in each of the (alpha/beta)(8) barrel subunits of the homodimeric molecule is composed of binuclear zinc ions bridged by the Glu125 side-chain located at the bottom of the barrel, and it faces toward the microvillar membrane of a kidney tubule. A dipeptidyl moiety of the therapeutically used cilastatin inhibitor is fully accommodated in the active-site pocket, which is small enough for precise recognition of dipeptide substrates. The barrel and active-site architectures utilizing catalytic metal ions exhibit unexpected similarities to those of the murine adenosine deaminase and the catalytic domain of the bacterial urease.  相似文献   

10.
Schwarz K  Gerth C  Anton M  Kuhn H 《Biochemistry》2000,39(47):14515-14521
The positional specificity of arachidonic acid oxygenation is currently the decisive parameter for classification of lipoxygenases. Although the mechanistic basis of lipoxygenase specificity is not completely understood, sequence determinants for the positional specificity have been identified for various isoenzymes. In this study we altered the positional specificity of the human 5-lipoxygenase by multiple site-directed mutagenesis and assayed the leukotriene A(4) synthase activity of the mutant enzyme species with (5S,6E,8Z,11Z,14Z)-5-hydroperoxy-6,8,11,14-eicos atetraenoic acid (5S-HpETE) as substrate. The wild-type 5-lipoxygenase converts 5S-HpETE almost exclusively to leukotriene A(4) as indicated by the dominant formation of leukotriene A(4) hydrolysis products. Since leukotriene synthesis involves a hydrogen abstraction from C(10), it was anticipated that the 15-lipoxygenating quadruple mutant F359W + A424I + N425M + A603I might not exhibit a major leukotriene A(4) synthase activity. Surprisingly, we found that this quadruple mutant exhibited a similar leukotriene synthase activity as the wild-type enzyme in addition to its double oxygenation activity. The leukotriene synthase activity of the 8-lipoxygenating double mutant F359W + A424I was almost twice as high, and similar amounts of leukotriene A(4) hydrolysis products and double oxygenation derivatives were detected with this enzyme species. These data indicate that site-directed mutagenesis of the human 5-lipoxygenase that leads to alterations in the positional specificity favoring arachidonic acid 15-lipoxygenation does not suppress the leukotriene synthase activity of the enzyme. The residual 8-lipoxygease activity of the mutant enzyme and its augmented rate of 5-HpETE conversion may be discussed as major reasons for this unexpected result.  相似文献   

11.
Homogenates from rat and pig kidney converted leukotriene A4 to 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid as well as leukotriene B4. Both hydrolyses were enzymatic as judged by the effects of heat treatment and proteolytic digestion. Upon subcellular fractionation, conversion of leukotriene A4 to 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid occurred both in the 105,000xg supernatant and the 20,000xg pellet from rat kidney, whereas conversion to leukotriene B4 was confined to the 105,000xg supernatant. We also found production of 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid and leukotriene B4 in isolated rat renal epithelial cells, either from exogenous leukotriene A4 or from this substrate supplied by human leukocytes.  相似文献   

12.
Leukotriene A4 hydrolase was quantitated by radioimmunoassay, in extracts from eight human tissues. The enzyme was detectable in all tissues, with the highest level (2.6 mg per g soluble protein) in leukocytes, followed by lung and liver. The polyclonal antiserum did not cross-react with cytosolic epoxide hydrolase purified from mouse or human liver. When incubated with leukotriene A4, formation of leukotriene B4 was evident in all tissues. Furthermore, enzymatic formation of (5S,6R)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid from leukotriene A4, was found in extracts from liver, kidney and intestines.  相似文献   

13.
Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity   总被引:6,自引:0,他引:6  
Purified leukotriene A4 hydrolase from human leukocytes is shown to exhibit peptidase activity towards the synthetic substrates alanine-4-nitroanilide and leucine-4-nitroanilide. The enzymatic activity is abolished after heat treatment (70 degrees C, 30 min). At 37 degrees C these substrates are hydrolyzed at a rate of 380 and 130 nmol/mg/min, respectively, and there is no enzyme inhibition during catalysis. Apo-leukotriene A4 hydrolase, obtained by removal of the intrinsic zinc atom, exhibits only a low peptidase activity which can be restored by the addition of stoichiometric amounts of zinc. Reconstitution of the apoenzyme with cobalt results in a peptidase activity which exceeds that of enzyme reactivated with zinc. Preincubation of the native enzyme with leukotriene A4 reduces the peptidase activity. Semipurified preparations of bovine intestinal aminopeptidase and porcine kidney aminopeptidase do not hydrolyze leukotriene A4 into leukotriene B4.  相似文献   

14.
The effect of a newly synthesized leukotriene antagonist, (E)-2,2-diethyl-3'-2-2-(4-isopropyl) thiazolyl ethenyl succinanilic acid (MCI-826), on liver injury and nephritis in mice was studied. In order to confirm the anti-leukotriene activity of MCI-826, the effect of MCI-826 on leukotriene C4(LTC4)- and leukotriene D4(LTD4)-induced vasculitis, liver and kidney injury was studied. MCI-826 was found to clearly inhibit LTC4- and LTD4-induced vasculitis, as well as liver and kidney injury. In addition to LT-induced reactions, MCI-826 inhibited liver injury induced by injection of either an anti-basic liver protein antibody into DBA/2 mice that had been previously immunized with rabbit IgG or of a bacterial lipopolysaccharide (LPS) into Corynebacterium parvum pretreated DDY mice. Moreover, MCI-826 inhibited nephritis, caused by injecting antiglomerular basement membrane antibody into C57BL/6 mice. These results suggest that MCI-826 can be applied to the treatment of certain tissue inflammatory diseases.  相似文献   

15.
P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61-74 (WGHQGMVNPTEEG) and 65-77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly variable CYP4F2 expression in liver (16.4+/-18.6pmol/mg microsomal protein; n=29) and kidney cortex (3.9+/-3.8 pmol/mg; n=10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r> or =0.63; p<0.05) with leukotriene B4 and arachidonate omega-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate omega-hydroxylase in human liver.  相似文献   

16.
The kidney of anaesthetised pigs was perfused in situ with carotid arterial blood. Renal blood flow and perfusion pressure were recorded. Close intra-arterial injection of leukotriene (LT) C4, D4 or noradrenaline (NA) caused a dose-related increase in vascular resistance. Both LTs were more active than NA by one to two orders of magnitude. Systemically-administered indomethacin potentiated the effect of all three agonists. Incubation of renal artery tissue with calcium ionophore A23187 in the presence of indomethacin resulted in the generation of LT-like material which, when assayed on guinea-pig ileum, was indistinguishable from LTD4. The results show that pig renal vessels produce LT-like material and suggest that the potent vasoconstriction induced by exogenous NA and LTs is modulated in vivo by a vasodilator cyclo-oxygenase product.  相似文献   

17.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

18.
Leukotriene D4-metabolizing enzyme was studied using rat neutrophils, lymphocytes and macrophages. These leukocyte sonicates converted leukotriene D4 to leukotriene E4. However, the leukotriene D4-metabolizing activity varied with cell type, and macrophages showed the highest activity among these leukocytes. The subcellular localization of the leukotriene D4-metabolizing enzyme of macrophages was examined, and the leukotriene D4-metabolizing activity was found to be present in the membrane fraction, but not in the nuclear, granular and cytosol fractions. When macrophages were modified chemically with diazotized sulfanilic acid, a poorly permeant reagent which inactivates cell-surface enzymes selectively, the leukotriene D4-metabolizing activity of macrophages decreased significantly (about 95%) without any inhibition of marker enzymes of microsome, cytosol, lysosome and mitochondria. When neutrophils and lymphocytes were modified with diazotized sulfanilic acid, the leukotriene D4-metabolizing activity was also inhibited about 90% by the modification. Among various enzyme inhibitors used, o-phenanthroline, a metal chelator, remarkably inhibited the leukotriene D4-metabolizing activity of leukocytes, and the o-phenanthroline-inactivated enzyme activity was fully reactivated by Co2+ and Zn2+. These findings seem to indicate that rat neutrophils, lymphocytes and macrophages possess the leukotriene D4-metabolizing metalloenzyme which converts leukotriene D4 to leukotriene E4, on the cell surface, although macrophages have a higher enzyme activity than the other two.  相似文献   

19.
In mammals, leukotriene A(4) hydrolase is a bifunctional zinc metalloenzyme that catalyzes hydrolysis of leukotriene A(4) into the proinflammatory leukotriene B(4) and also possesses an arginyl aminopeptidase activity. We have cloned, expressed, and characterized a protein from Saccharomyces cerevisiae that is 42% identical to human leukotriene A(4) hydrolase. The purified protein is an anion-activated leucyl aminopeptidase, as assessed by p-nitroanilide substrates, and does not hydrolyze leukotriene A(4) into detectable amounts of leukotriene B(4). However, the S. cerevisiae enzyme can utilize leukotriene A(4) as substrate to produce a compound identified as 5S,6S-dihydroxy-7,9-trans-11, 14-cis-eicosatetraenoic acid. Both catalytic activities are inhibited by 3-(4-benzyloxyphenyl)-2-(R)-amino-1-propanethiol (thioamine), a competitive inhibitor of human leukotriene A(4) hydrolase. Furthermore, the peptide cleaving activity of the S. cerevisiae enzyme was stimulated approximately 10-fold by leukotriene A(4) with kinetics indicating the presence of a lipid binding site. Nonenzymatic hydrolysis products of leukotriene A(4), leukotriene B(4), arachidonic acid, or phosphatidylcholine were without effect. Moreover, leukotriene A(4) could displace the inhibitor thioamine and restore maximal aminopeptidase activity, indicating that the leukotriene A(4) binding site is located at the active center of the enzyme. Hence, the S. cerevisiae leukotriene A(4) hydrolase is a bifunctional enzyme and appears to be an early ancestor to mammalian leukotriene A(4) hydrolases.  相似文献   

20.
3H-Labeled leukotriene C3 was efficiently taken up by the isolated, perfused rat liver and excreted into the bile. The isolated, perfused kidney eliminated leukotriene C3 from the perfusate slower and excreted only a fraction of the radioactivity into the urine. Isolated hepatic, intestinal and renal cells also took up leukotriene C3, the renal cells being the most effective in accumulating the label. Anthglutin, an inhibitor of γ-glutamyl transferase, decreased the uptake by kidney cells but had no effect on the uptake by the other cell types. In liver cells, the uptake rate was sensitive to temperature and to cellular ATP content. Chromatographic analyses indicated that renal cells metabolized leukotriene C3 more rapidly than hepatic and intestinal cells. Leukotriene D3 and E3 were formed during the incubations with kidney cells, whereas intestinal cells produced mainly more polar metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号