首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The eukaryotic Puf proteins regulate mRNA translation and degradation by binding the 3' untranslated regions of target mRNAs. Crystal structure analysis of a human Puf bound to RNA suggested a modular mode of binding, with specific amino acids within each of eight repeat domains contacting a single nucleotide of the target RNA. Here we study the mechanism by which the yeast Puf3p binds and stimulates the degradation of COX17 mRNA. Mutation of the predicted RNA-binding positions of Puf3p to those found in Puf5p demonstrated that a single amino acid change in Puf3p abolished detectable binding to COX17. Since this amino acid position in both Puf3p and Puf5p is predicted to contact an adenine in the respective target RNAs, the amino acid in Puf3p must play a more critical role in promoting COX17 interaction. In contrast, an amino acid change in the third repeat of Puf3p, which interacts with the only divergent nucleotide between the Puf3p and Puf5p targets, had no effect on binding COX17. These results argue that a simple set of rules cannot reliably link specific amino acid positions with target specificity. Each of these amino acid changes in Puf3p enhanced binding to the Puf5p target HO RNA, suggesting a different mode of binding to this target. Finally, we identified an outer surface loop that was dispensable for binding but was required to promote both rapid deadenylation and subsequent decapping of the COX17 mRNA, most likely as a point of protein-protein interactions.  相似文献   

3.
Olivas W  Parker R 《The EMBO journal》2000,19(23):6602-6611
  相似文献   

4.
The Puf family of RNA-binding proteins regulates gene expression primarily by interacting with the 3′ untranslated region (3′ UTR) of targeted mRNAs and inhibiting translation and/or stimulating decay. Physical association and computational analyses of yeast Puf3p identified >150 potential mRNA targets involved in mitochondrial function. However, only COX17 has been established as a target of Puf3p-mediated deadenylation and decapping. We have identified 10 new targets that are rapidly degraded in a Puf3p-dependent manner. We also observed changes in Puf3p activity in response to environmental conditions. Puf3p promotes rapid degradation of mRNA targets in the fermentable carbon source dextrose. However, Puf3p-mediated decay activity is inhibited in carbon sources that require mitochondrial function for efficient cell growth. In addition, the activity of Puf3p is rapidly altered by changing the carbon source. PUF3 expression is not decreased at the RNA or protein level by different carbon sources and localization is not significantly altered, suggesting that Puf3p activity is regulated posttranslationally. Finally, under conditions when Puf3p is unable to stimulate decay, Puf3p can still bind its target mRNAs. Together, these experiments provide insight into the carbon source-specific control of Puf3p activity and how such alterations allow Puf3p to dynamically regulate mitochondrial function.  相似文献   

5.
mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species.  相似文献   

6.
Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress.  相似文献   

7.
mRNA stability and translation are regulated by protein repressors that bind 3'-untranslated regions. PUF proteins provide a paradigm for these regulatory molecules: like other repressors, they inhibit translation, enhance mRNA decay, and promote poly(A) removal. Here we show that a single mRNA in Saccharomyces cerevisiae, encoding the HO endonuclease, is regulated by two distinct PUF proteins, Puf4p and Mpt5p. These proteins bind to adjacent sites and can co-occupy the mRNA. Both proteins are required for full repression and deadenylation in vivo; their removal dramatically stabilizes the mRNA. The two proteins act through overlapping but non-identical mechanisms: repression by Puf4p is dependent on deadenylation, whereas repression by Mpt5p can occur through additional mechanisms. Combinatorial action of the two regulatory proteins may allow responses to specific environmental cues and be common in 3'-untranslated region-mediated control.  相似文献   

8.
9.
Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycB(reverse) and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a "spacer." The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.  相似文献   

10.
Cui L  Fan Q  Li J 《Nucleic acids research》2002,30(21):4607-4617
A novel class of RNA-binding proteins, Puf, regulates translation and RNA stability by binding to specific sequences in the 3'-untranslated region of target mRNAs. Members of this protein family share a conserved Puf domain consisting of eight 36 amino acid imperfect repeats. Here we report two Puf family member genes, PfPuf1 and PfPuf2, from the human malaria parasite Plasmodium falciparum. Both genes are spliced with four and three introns clustered within or near the Puf domains, respectively. Northern and RT-PCR analysis indicated that both genes were differentially expressed in gametocytes during erythrocytic development of the parasite. Except for similarities in the Puf domain and expression profile, the deduced PfPuf1 and PfPuf2 proteins differ considerably in size and structure. PfPuf1 has 1894 amino acids and a central Puf domain, whereas PfPuf2 is much smaller with a C-terminal Puf domain. The presence of at least two Puf members in other Plasmodium species suggests that these proteins play evolutionarily similar roles during parasite development. Both in vivo studies using the yeast three-hybrid system and in vitro binding assays using the recombinant Puf domain of PfPuf1 expressed in bacteria demonstrated intrinsic binding activity of the PfPuf1 Puf domain to the NRE sequences in the hunchback RNA, the target sequence for Drosophila Pumilio protein. Altogether, these results suggest that PfPufs might function during sexual differentiation and development in Plasmodium through a conserved mechanism of translational regulation of their target mRNAs.  相似文献   

11.
Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1   总被引:2,自引:0,他引:2  
Sequence-specific RNA-protein interactions underlie regulation of many mRNAs. Here we analyze the RNA sequence specificity of Caenorhabditis elegans FBF-1, a founding member of the PUF protein family. Like other PUF proteins, FBF-1 binds to the 3' UTR of target mRNAs and decreases expression of those target genes. Here, we show that FBF-1 and its close relative, FBF-2, bind with similar affinity to multiple RNA sites. We use mutagenesis and in vivo selection experiments to identify nucleotides that are essential for FBF-1 binding. The binding elements comprise a "core" central region and flanking sequences. The core region is similar but distinct from the binding sites of other PUF proteins. We combine the identification of binding elements with informatics to predict new FBF-1 binding sites in a C. elegans 3' UTR database. These data identify a set of new candidate mRNA targets of FBF-1 and FBF-2.  相似文献   

12.
13.
Our previous evidence suggests that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 plays a part in the regulation of the Cyp2a5 gene by interacting with the 3' untranslated region (UTR) of the CYP2A5 mRNA. However, the exact role of this interaction is not clear. The aim of the present work was to gain further insight into the regulation process of Cyp2a5. For this purpose the 3' UTR of CYP2A5 was fused to the coding region of luciferase mRNA. Luciferase recombinants containing either the full length 3' UTR, or the 3' UTR lacking a previously described 71 nucleotide (nt) region (the hnRNP A1 primary binding site), were transiently expressed in cells expressing or lacking hnRNP A1. The expression of the luciferase recombinants was examined both at mRNA and enzyme activity levels. The results disclosed that the presence of hnRNP A1 was required for the high expression of the recombinant carrying the full length 3' UTR of CYP2A5. Deletion of the hnRNP A1 primary binding site dramatically modified the expression pattern: the mRNA levels and luciferase activities of the deletion mutant were independent from hnRNP A1. These results conclusively demonstrate that the 71 nt region in the 3' UTR of CYP2A5 mRNA can confer hnRNP A1-dependent regulation to a gene. In addition, comparison of RNA levels and luciferase activities suggested that regions flanking the hnRNP A1 binding site could regulate translation of the CYP2A5 mRNA. These results are consistent with a model in which the binding of hnRNP A1 to the 71 nt putative hairpin-loop region in the CYP2A5 mRNA 3' UTR upregulates mRNA levels possibly by protecting the mRNA from degradation.  相似文献   

14.
V E Myer  X C Fan    J A Steitz 《The EMBO journal》1997,16(8):2130-2139
Expression of many proto-oncogenes, cytokines and lymphokines is regulated by targeting their messenger RNAs for rapid degradation. Essential signals for this control are AU-rich elements (AREs) in the 3' untranslated region (UTR) of these messages. The ARE is loosely defined as the five-nucleotide sequence AUUUA embedded in a uracil-rich region. A transacting factor, presumably a protein, binds the ARE and initiates recognition by the destabilization machinery. Numerous candidate ARE-binding proteins have been proposed. We show that a 32 kDa protein in HeLa nuclear extracts characterized previously has RNA-binding specificity that correlates with the activity of an ARE in directing mRNA decay. Purification and subsequent analyses demonstrate that this 32 kDa protein is identical to a recently identified member of the Elav-like gene family (ELG) called HuR. The in vitro binding selectivity of HuR is indicative of an ARE sequence's ability to destabilize a mRNA in vivo, suggesting a critical role for HuR in the regulation of mRNA degradation.  相似文献   

15.
We demonstrate that a bacteriophage protein and a spliceosomal protein can be converted into eukaryotic translational repressor proteins. mRNAs with binding sites for the bacteriophage MS2 coat protein or the spliceosomal human U1A protein were expressed in human HeLa cells and yeast. The presence of the appropriate binding protein resulted in specific, dose-dependent translational repression when the binding sites were located in the 5' untranslated region (UTR) of the reporter mRNAs. Neither mRNA export from the nucleus to the cytoplasm nor mRNA stability was demonstrably affected by the binding proteins. The data thus reveal a general mechanism for translational regulation: formation of mRNA-protein complexes in the 5' UTR controls translation initiation by steric blockage of a sensitive step in the initiation pathway. Moreover, the findings establish the basis for novel strategies to study RNA-protein interactions in vivo and to clone RNA-binding proteins.  相似文献   

16.
17.
18.
PUF proteins bind mRNAs and regulate their translation, stability, and localization. Each PUF protein binds a selective group of mRNAs, enabling their coordinate control. We focus here on the specificity of Puf2p and Puf1p of Saccharomyces cerevisiae, which copurify with overlapping groups of mRNAs. We applied an RNA-adapted version of the DRIM algorithm to identify putative binding sequences for both proteins. We first identified a novel motif in the 3' UTRs of mRNAs previously shown to associate with Puf2p. This motif consisted of two UAAU tetranucleotides separated by a 3-nt linker sequence, which we refer to as the dual UAAU motif. The dual UAAU motif was necessary for binding to Puf2p, as judged by gel shift, yeast three-hybrid, and coimmunoprecipitation from yeast lysates. The UAAU tetranucleotides are required for optimal binding, while the identity and length of the linker sequences are less critical. Puf1p also binds the dual UAAU sequence, consistent with the prior observation that it associates with similar populations of mRNAs. In contrast, three other canonical yeast PUF proteins fail to bind the Puf2p recognition site. The dual UAAU motif is distinct from previously known PUF protein binding sites, which invariably possess a UGU trinucleotide. This study expands the repertoire of cis elements bound by PUF proteins and suggests new modes by which PUF proteins recognize their mRNA targets.  相似文献   

19.
20.
The mRNA surveillance system is known to rapidly degrade aberrant mRNAs that contain premature termination codons in a process referred to as nonsense-mediated decay. A second class of aberrant mRNAs are those wherein the 3' UTR is abnormally extended due to a mutation in the polyadenylation site. We provide several observations that these abnormally 3'-extended mRNAs are degraded by the same machinery that degrades mRNAs with premature nonsense codons. First, the decay of the 3'-extended mRNAs is dependent on the same decapping enzyme and 5'-to-3' exonuclease. Second, the decay is also dependent on the proteins encoded by the UPF1, UPF2, and UPF3 genes, which are known to be specifically required for the rapid decay of mRNAs containing nonsense codons. Third, the ability of an extended 3' UTR to trigger decay is prevented by stabilizing sequences within the PGK1 coding region that are known to protect mRNAs from the rapid decay induced by premature nonsense codons. These results indicate that the mRNA surveillance system plays a role in degrading abnormally extended 3' UTRs. Based on these results, we propose a model in which the mRNA surveillance machinery degrades aberrant mRNAs due to the absence of the proper spatial arrangement of the translation-termination codon with respect to the 3' UTR element as defined by the utilization of a polyadenylation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号