首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of a 25 kDa protein, encoded by the fused mitochondrial pcf gene, is associated with cytoplasmic male sterility (CMS) in petunia. To investigate the role of the 25 kDa protein in CMS we have transformed petunia and tobacco plants with constructs expressing a portion of the urfS sequence of the pcf cDNA which encodes the 25 kDa protein. The urfS sequence was fused with two different mitochondrial targeting sequences. The chimeric gene coding region was placed under the control of the CaMV 35S promoter or a tapetum-specific promoter. Expression of the PCF protein was obtained in mitochondria of transgenic petunia and tobacco plants, yet fertility of the plants was not affected. Analysis of the location of the urfS-encoded protein revealed that it fractionates primarily into the soluble fraction in the transgenic plants whereas the genuine 25 kDa protein is found primarily in the soluble fraction but also in the membrane portion of immature buds from CMS petunia plants. Fertile transgenic plants were obtained which expressed the 25 kDa protein in the tapetal layer of post-meiotic anthers, while CMS plants express the endogenous 25 kDa protein in both the tapetal layer and sporogenous tissue of pre-meiotic anthers.  相似文献   

2.
3.
We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F(0). Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure.  相似文献   

4.
The petunia fused gene (pcf), which is associated with cytoplasmic male sterility (CMS), is composed of sequences derived from atp9, coxII, and an unidentified reading frame termed urfS. To determine whether the pcf gene is expressed at the protein level, we produced antibodies to synthetic peptides specified by the coxII and urfS portions of the pcf gene. Anti-COXII peptide antibodies recognized petunia COXII but no other mitochondrial proteins. Anti-URF-S peptide antibodies recognized a 20-kilodalton protein present in both cytoplasmic male sterile and fertile lines and a protein with an apparent molecular mass of 25 kilodaltons present only in cytoplasmic male sterile lines. The 25-kilodalton protein was found to be synthesized by isolated mitochondria and to fractionate into both the soluble and membrane portions of disrupted mitochondria, whereas the 20-kilodalton protein was found only in the membrane fraction. The abundance of the 25-kilodalton protein was much lower in fertile plants carrying the cytoplasmic male sterile cytoplasm and a single dominant nuclear fertility restorer gene, Rf. Thus, the pcf gene is correlated with cytoplasmic male sterility not only by its co-segregation with the phenotype in somatic hybrids, but also by the modification of its expression at the protein level through the action of a nuclear gene that confers fertility.  相似文献   

5.
6.
We have characterized the only mutation detected so far in S-Pcf, the mitochondrial cytoplasmic male sterility (CMS)-specific locus of petunia. This locus consists of three open reading frames (ORFs): the first contains part of atp9, an intron-less cox2 pseudogene (which does not contain the original cox2 ATG) and the unidentified reading frame urf-s; the second and third ORFs correspond to the only copies of nad3 and rps12 genes in the genome, respectively. In the cell line R13-138, which was generated from a male-sterile somatic hybrid (line SH13-138), a change in the first ORF of the S-Pcf locus has been characterized: the atp9 sequence has been lost, while exon1 of the normal copy of the cox2 gene (including the original ATG sequence) and the adjacent 5′ sequence of the petunia recombination repeat, have been introduced. The data suggest that this reorganization of mtDNA is the consequence of a homologous recombination event involving part of the cox2 coding region, and that the cox2 coding region may serve as an active site for inter- or intra-mtDNA homologous recombination. The results further suggest that in line SH13-138 (or during its maintenance in tissue culture), segregation of the S-Pcf-containing mtDNA molecules has occurred, and the mutant mtDNA is now predominant in the population. Received: 9 September 1996 / Accepted: 27 January 1997  相似文献   

7.
A cDNA clone encoding a mitochondrial NADH dehydrogenase from Neurospora crassa was sequenced. The total DNA sequence encompasses 2570 base pairs and contains an open reading frame of 2019 base pairs coding for a precursor polypeptide of 673 amino acid residues. The protein is encoded by a single-copy gene located to the right side of the centromere in linkage group IV of the fungal genome. The N-terminus of the precursor protein has characteristics of a mitochondrial targeting pre-sequence. The protein displays homology with mitochondrial NADH dehydrogenases from yeast. In contrast to these polypeptides, however, analysis of its primary structure revealed that it contains a well-conserved calcium-binding domain. Rabbit antiserum against the protein expressed in an heterologous system recognises a mitochondrial protein of N. crassa with an apparent molecular mass of 64 kDa. Analysis of the fungal mitochondria by swelling, digitonin fractionation and alkaline treatment indicate that the protein is located in the inner membrane of the organelles, possibly facing the matrix side.  相似文献   

8.
9.
10.
Summary By screening a wheat mitoplast cDNA bank, we have identified an open reading frame of 444 by that has a derived amino acid sequence homologous to bacterial-type S7 ribosomal proteins. This gene, designated rps7, is located upstream of one of two 26S rRNA gene copies in the wheat mitochondrial genome and is expressed as an abundant mRNA of approximately 0.7 kb. Its 5 terminus maps to the end of an 80 by element that is closely related to sequences preceding the wheat coxII, orf25 and atp6 genes. Southern hybridization analysis indicates that rps7-homologous sequences are present in the mitochondria of rice and pea, but not soybean.  相似文献   

11.
12.
Summary Translation of mitochondrial cytochrome b mRNA in yeast is activated by the product of the nuclear gene CBS1. CBS1 encodes a 27 kDa precursor protein, which is cleaved to a 24 kDa mature protein during the import into isolated mitochondria. The sequences required for mitochondrial import reside in the amino-terminal end of the CBS1 precursor. Deletion of the 76 amino-terminal amino acids renders the protein incompetent for mitochondrial import in vitro and non-functional in vivo. When present on a high copy number plasmid and under the control of a strong yeast promoter, biological function can be restored by this truncated derivative. This observation indicates that the CBS1 protein devoid of mitochondrial targeting sequences can enter mitochondria in vivo, possibly due to a bypass of the mitochondrial import system.  相似文献   

13.
14.
We have shown that the open reading frame orf221 is an active mitochondrial gene which encodes a novel mitochondrial polypeptide. The orf221 sequence is common to higher plants but absent in animal and fungal mitochondria. A mitochondrial polypeptide with an apparent molecular weight of 21 000 was detected with a polyclonal antibody raised against an ORF221 fusion protein. In organello translation followed by immunoprecipitation with the anti-ORF221 antibody demonstrated that this polypeptide is encoded by the orf221 gene in plant mitochondria. The ORF221 was found to be a mitochondrial membrane protein in normal (N), cms-T, and cms-C cytoplasms of several inbred lines of maize (Zea mays L.) and in other plant species.  相似文献   

15.
Symbioses among co‐evolving taxa are often marked by genome reductions such as a loss of protein‐coding genes in at least one of the partners as a means of reducing redundancy or intergenomic conflict. To explore this phenomenon in an iconic yet under‐studied group of obligate symbiotic organisms, mitochondrial genomes of 22 newly sequenced and annotated species of lichenized fungi were compared to 167 mitochondrial genomes of nonlichenized fungi. Our results demonstrate the first broad‐scale loss of atp9 from mitochondria of lichenized fungi. Despite key functions in mitochondrial energy production, we show that atp9 has been independently lost in three different lineages spanning 10 of the 22 studied species. A search for predicted, functional copies of atp9 among genomes of other symbionts involved in each lichen revealed the full‐length, presumably functional copies of atp9 in either the photosynthetic algal partner or in other symbiotic fungi in all 10 instances. Together, these data yield evidence of an obligate symbiotic relationship in which core genomic processes have been streamlined, likely due to co‐evolution.  相似文献   

16.
Some yeast strains possess a sequence-specific endonuclease, Endo.SceI, which is a heterodimeric enzyme localized in mitochondria. The larger subunit (75 kDa) of Endo.SceI, encoded by a nuclear gene (ENS1), is transported from the cytosol into the mitochondria. In this study, we determined the partial amino acid sequence of the smaller subunit (50 kDa) of Endo.SceI. The determined sequence matched well the partial sequence deduced from a mitochondrial open reading frame (RF3). The RF3 locus is known to exhibit polymorphism since this reading frame in some yeast strains is supposed to encode a maturase-like protein, whereas in other strains, the frame is interrupted by GC clusters, which thus break the frame. Southern blot analysis of various yeast strains showed that the continuity of RF3 is correlated with the presence of Endo.SceI activity. These data indicate that the continuous RF3 sequence is a functional gene (ENS2) coding for the smaller subunit of Endo.SceI. The results of cytoduction, by which the continuous RF3 sequence was transferred into a yeast strain lacking mitochondrial DNA, confirmed this conclusion. This study suggests the involvement of Endo.SceI in genetic recombination of mitochondrial DNA.  相似文献   

17.
We have characterized the only mutation detected so far in S-Pcf, the mitochondrial cytoplasmic male sterility (CMS)-specific locus of petunia. This locus consists of three open reading frames (ORFs): the first contains part of atp9, an intron-less cox2 pseudogene (which does not contain the original cox2 ATG) and the unidentified reading frame urf-s; the second and third ORFs correspond to the only copies of nad3 and rps12 genes in the genome, respectively. In the cell line R13-138, which was generated from a male-sterile somatic hybrid (line SH13-138), a change in the first ORF of the S-Pcf locus has been characterized: the atp9 sequence has been lost, while exon1 of the normal copy of the cox2 gene (including the original ATG sequence) and the adjacent 5′ sequence of the petunia recombination repeat, have been introduced. The data suggest that this reorganization of mtDNA is the consequence of a homologous recombination event involving part of the cox2 coding region, and that the cox2 coding region may serve as an active site for inter- or intra-mtDNA homologous recombination. The results further suggest that in line SH13-138 (or during its maintenance in tissue culture), segregation of the S-Pcf-containing mtDNA molecules has occurred, and the mutant mtDNA is now predominant in the population.  相似文献   

18.
19.
20.
We studied for the first time the ATP-synthase complex from shrimp as a model to understand the basis of crustacean bioenergetics since they are exposed to endogenous processes as molting that demand high amount of energy. We analyzed the cDNA sequence of two subunits of the Fo sector from mitochondrial ATP-synthase in the white shrimp Litopenaeus vannamei. The nucleus encoded atp9 subunit presents a 773 bp sequence, containing a signal peptide sequence only observed in crustaceans, and the mitochondrial encoded atp6 subunit presents a sequence of 675 bp, and exhibits high identity with homologous sequences from invertebrate species. ATP9 and ATP6 protein structural models interaction suggest specific functional characteristics from both proteins in the mitochondrial enzyme. Differences in the steady-state mRNA levels of atp9 and atp6 from five different tissues correlate with tissue function. Moreover, significant changes in the mRNA levels of both subunits at different molt stages were detected. We discussed some insights about the enzyme structure and the regulation mechanisms from both ATP-synthase subunits related to the energy requirements of shrimp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号