首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A current model ascribes glucose-induced insulin secretion to the interaction of a triggering pathway (K(ATP) channel-dependent Ca(2+) influx and rise in cytosolic [Ca(2+)](c)) and an amplifying pathway (K(ATP) channel-independent augmentation of secretion without further increase of [Ca(2+)](c)). However, several studies of sulfonylurea receptor 1 null mice (Sur1KO) failed to measure significant effects of glucose in their islets lacking K(ATP) channels. We addressed this issue that challenges the model. Compared with controls, fresh Sur1KO islets showed slightly elevated basal [Ca(2+)](c) and insulin secretion. In 15 mm glucose, the absolute rate of secretion was approximately 3-fold lower in Sur1KO than control islets, with only poor increase above base line. Overnight culture of Sur1KO islets in 10 mm glucose (not in 5 mm) augmented basal insulin secretion and considerably improved the response to 15 mm glucose, which reached higher values than in control islets, in which culture had little impact. Glucose stimulation during KCl depolarization showed that the amplifying pathway is functional in fresh and cultured Sur1KO islets. The differences in insulin secretion between fresh and cultured Sur1KO islets and between Sur1KO and control islets were not attributable to differences in insulin content, glucose oxidation rate, or synchronization of [Ca(2+)](c) oscillations. The unmasking of glucose-induced insulin secretion in beta-cells lacking K(ATP) channels is paradoxically due to improvement in the production of a triggering signal (elevated [Ca(2+)](c)). The results show that K(ATP) channels are not the only transducer of glucose effects on [Ca(2+)](c) in beta-cells. They explain controversies in the literature and refute arguments raised against the model implicating an amplifying pathway in glucose-induced insulin secretion.  相似文献   

2.
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca(2+)-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl(3) (100 micromol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 micromol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca(2+)-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca(2+) in medium.  相似文献   

3.
In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.  相似文献   

4.
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.  相似文献   

5.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

6.
Exogenous arachidonic acid does not stimulate insulin release in Ca++-containing medium, but a potent effect was unmasked by extracellular Ca++ depletion. This secretion met several criteria of exocytotic release. It did not require the oxygenation of arachidonate or its esterification into islet membranes, but was potentiated by the presence of 16.7 mM glucose such that 33 microM arachidonate could reverse the inhibitory effects of extracellular Ca++ removal on glucose-induced insulin secretion. Arachidonic acid alone stimulated a rise in intracellular Ca++ concentrations in dispersed islet cells (measured by the fura-2 technique) equal to that induced by 16.7 mM glucose in normal medium. Arachidonic acid may be a critical coupling signal in normal islets.  相似文献   

7.
BACKGROUND: The objective was to compare signal transduction pathways exploited by glucose and cell swelling in stimulating insulin secretion. METHODS: Isolated rat (Wistar) pancreatic islets were stimulated in vitro by 20 mmol/l glucose or 30% hypotonic medium (202 mOsm/kg) in various experimental conditions. RESULTS: Glucose did not stimulate insulin release in calcium free medium. Cell swelling-induced insulin release in calcium free medium, even in the presence of the membrane permeable calcium chelator BAPTA/AM (10 micromol/l). Protein kinase C (PKC) inhibitor bisindolylmaleimide VIII (1 micromol/l) abolished the stimulation of insulin secretion by glucose but did not affect the swelling-induced insulin release. PKC activator phorbol 12-13-dibutyrate (1 micromol/l) stimulated insulin secretion in medium containing Ca2+ and did not potentiate insulin secretion stimulated by hypotonic extracellular fluid. Dilution of the medium (10-30%) had an additive effect on the glucose-induced insulin secretion. Noradrenaline (1 micromol/l) abolished glucose-induced insulin secretion but did not inhibit hypotonic stimulation either in presence or absence of Ca2+. CONCLUSION: Glucose- and swelling-induce insulin secretion through separate signal transduction pathways. Hyposmotic stimulation is independent from both the extracellular and intracellular Ca2+, does not involve PKC activation, and could not be inhibited by noradrenaline. These data indicate a novel signaling pathway for stimulation of insulin secretion exploited by cell swelling.  相似文献   

8.
Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.  相似文献   

9.
The NADH shuttle system is composed of the glycerol phosphate and malate-aspartate shuttles. We generated mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. Application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle, to mGPDH-deficient islets demonstrated that the NADH shuttle system was essential for coupling glycolysis with activation of mitochondrial ATP generation to trigger glucose-induced insulin secretion. The present study revealed that blocking the NADH shuttle system severely suppressed closure of the ATP-sensitive potassium (K(ATP)) channel and depolarization of the plasma membrane in response to glucose in beta cells, although properties of the K(ATP) channel on the excised beta cell membrane were unaffected. In mGPDH-deficient islets treated with aminooxyacetate, Ca(2+) influx through the plasma membrane induced by a depolarizing concentration of KCl in the presence of the K(ATP) channel opener diazoxide restored insulin secretion. However, the level of the secretion was only approximately 40% of wild-type controls. Thus, glucose metabolism through the NADH shuttle system leading to efficient ATP generation is pivotal to activation of both the K(ATP) channel-dependent pathway and steps distal to an elevation of cytosolic Ca(2+) concentration in glucose-induced insulin secretion.  相似文献   

10.
BACKGROUND: This study was undertaken to examine putative mechanisms of calcium independent signal transduction pathway of cell swelling-induced insulin secretion. METHODS: The role of phospholipase A(2), G proteins, and soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) in insulin secretion induced by 30% hypotonic medium was studied using isolated rat pancreatic islets. RESULTS: In contrast to glucose stimulation, osmotically induced insulin secretion from pancreatic islets was not inhibited by 10 micromol/l bromoenol lactone, an iPLA(2) (Ca(2+) independent phospholipase) inhibitor. Similarly, preincubation of islets for 20 hours with 25 microg/ml mycophenolic acid to inhibit GTP synthesis fully abolished glucose-induced insulin secretion but was without effect on hypotonicity stimulated insulin release. Glucose-induced insulin secretion was prevented by preincubation with 20 nmol/l tetanus toxin (TeTx), a metalloprotease inactivating soluble SNARE. Cell swelling-induced insulin secretion was inhibited by TeTx in the presence of calcium ions but not in calcium depleted medium. The presence of N-ethylmaleimide (NEM, 5 mmol/l, another inhibitor of SNARE proteins) in the medium resulted in high basal insulin secretion and lacking response to glucose stimulation. In contrast, high basal insulin secretion from NEM treated islets further increased after hypotonic stimulation. CONCLUSION: G proteins and iPLA(2) - putative mediators of Ca(2+) independent signaling pathway participate in glucose but not in hypotonicity-induced insulin secretion. Hypotonicity-induced insulin secretion is sensitive to clostridial neurotoxin TeTx but is resistant to NEM.  相似文献   

11.
The stimulatory effect of dopamine through dopamine D2 receptor on glucose-induced insulin secretion was studied in the pancreatic islets in vitro. Dopamine significantly stimulated insulin secretion at a concentration of 10-8 M in the presence of high glucose (20 mM). The higher concentrations of dopamine (10(-7)-10(-4)) inhibited glucose-induced insulin secretion in the presence of both 4 mM and 20 mM glucose. Stimulatory and inhibitory effect of dopamine on glucose-induced insulin secretion was reverted by the addition of dopamine D2 receptor antagonists such as butaclamol and sulpiride. Norepinephrine (NE) at 10(-4) M concentration inhibited the dopamine uptake as well as its stimulatory effect at 10(-8) M concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose-induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.  相似文献   

12.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

13.
The influence of down-regulation of protein kinase C on glucose-induced insulin secretion was studied. A 22-24 h exposure of mouse pancreatic islets to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 0.16 microM) in RPMI 1640 culture medium (8.3 mM-glucose, 0.43 mM-Ca2+) abolished TPA (0.16 microM)-induced insulin secretion and led to a potentiation of phase 1 and a decrease in phase 2 of glucose-induced insulin secretion. Thus, although the total insulin release during 40 min of perfusion with glucose (16.7 mM) (45-85 min) was unaffected, the percentage released during phase 1 (45-55 min) was increased from 12.9 +/- 1.5 (4)% in controls to 35.8 +/- 3.9 (4)% in TPA-treated islets (P less than 0.01), and the percentage released during phase 2 (65-85 min) was decreased from 63.2 +/- 3.9 (4)% to 35.3 +/- 1.4 (4)% (P less than 0.005). In contrast, TPA exposure in TCM 199 medium (5.5 mM-glucose, 1.26 mM-Ca2+) caused a total abolition of both phases 1 and 2 of glucose-induced secretion. However, inclusion of the alpha 2-adrenergic agonists adrenaline (10 microM) or clonidine (10 microM), or lowering of the Ca2+ concentration in TCM 199 during down-regulation, preserved and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1 and inhibited phase 2 of carbamoylcholine (100 microM)-induced insulin secretion at 3.3 mM-glucose, and abolished the potentiating effect of carbamoylcholine (100 microM) at 16.7 mM-glucose. These results substantiate a role for protein kinase C in insulin secretion, and suggest that protein kinase C inhibits phase 1 and stimulates phase 2 of both glucose-induced and carbamoylcholine-induced insulin secretion.  相似文献   

14.
15.
L-type voltage-gated Ca2+ channels (Cav1.2) mediate a major part of insulin secretion from pancreatic beta-cells. Cav1.2, like other voltage-gated Ca2+ channels, is functionally and physically coupled to synaptic proteins. The tight temporal coupling between channel activation and secretion leads to the prediction that rearrangements within the channel can be directly transmitted to the synaptic proteins, subsequently triggering release. La3+, which binds to the polyglutamate motif (EEEE) comprising the selectivity filter, is excluded from entry into the cells and has been previously shown to support depolarization-evoked catecholamine release from chromaffin and PC12 cells. Hence, voltage-dependent trigger of release relies on Ca2+ ions bound at the EEEE motif and not on cytosolic Ca2+ elevation. We show that glucose-induced insulin release in rat pancreatic islets and ATP release in INS-1E cells are supported by La3+ in nominally Ca2+-free solution. The release is inhibited by nifedipine. Fura 2 imaging of dispersed islet cells exposed to high glucose and La3+ in Ca2+-free solution detected no change in fluorescence; thus, La3+ is excluded from entry, and Ca2+ is not significantly released from intracellular stores. La3+ by interacting extracellularlly with the EEEE motif is sufficient to support glucose-induced insulin secretion. Voltage-driven conformational changes that engage the ion/EEEE interface are relayed to the exocytotic machinery prior to ion influx, allowing for a fast and tightly regulated process of release. These results confirm that the Ca2+ channel is a constituent of the exocytotic complex [Wiser et al. (1999) PNAS 96, 248-253] and the putative Ca2+-sensor protein of release.  相似文献   

16.
Mitochondrial metabolism plays a pivotal role in the pancreatic beta cell by generating signals that couple glucose sensing to insulin secretion. We have demonstrated previously that mitochondrially derived glutamate participates directly in the stimulation of insulin exocytosis. The aim of the present study was to impose altered cellular glutamate levels by overexpression of glutamate decarboxylase (GAD) to repress elevation of cytosolic glutamate. INS-1E cells infected with a recombinant adenovirus vector encoding GAD65 showed efficient overexpression of the GAD protein with a parallel increase in enzyme activity. In control cells glutamate levels were slightly increased by 7.5 mm glucose (1.4-fold) compared with the effect at 15 mm (2.3-fold) versus basal 2.5 mm glucose. Upon GAD overexpression, glutamate concentrations were no longer elevated by 15 mm glucose as compared with controls (-40%). Insulin secretion was stimulated in control cells by glucose at 7.5 mm (2.5-fold) and more efficiently at 15 mm (5.2-fold). INS-1E cells overexpressing GAD exhibited impaired insulin secretion on stimulation with 15 mm glucose (-37%). The secretory response to 30 mm KCl, used to raise cytosolic Ca(2+) levels, was unaffected. Similar results were obtained in perifused rat pancreatic islets following adenovirus transduction. This GAD65-mediated glutamate decarboxylation correlating with impaired glucose-induced insulin secretion is compatible with a role for glutamate as a glucose-derived factor participating in insulin exocytosis.  相似文献   

17.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

18.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

19.
Direct effects of adrenomedullin on insulin secretion from pancreatic beta-cells were investigated using a differentiated insulin-secreting cell line INS-1. Adrenomedullin (1-100 pM) inhibited insulin secretion at both basal (3 mM) and high (15 mM) glucose concentrations, although this inhibitory effect was not observed at higher concentrations of adrenomedullin. The inhibition of glucose-induced insulin secretion by adrenomedullin was restored with 12-h pretreatment with 1 microg/ml pertussis toxin (PTX), suggesting that this effect could be mediated by PTX-sensitive G proteins. Cellular glucose metabolism evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide colorimetric assay was not affected by adrenomedullin at concentrations that inhibited insulin secretion. Moreover, electrophysiological studies revealed that 10 pM adrenomedullin had no effect on membrane potential, voltage-gated calcium currents, or cytosolic calcium concentration induced by 15 mM glucose. Finally, insulin release induced by cAMP-raising agents, such as forskolin plus 3-isobutyl-1-methylxanthine or the calcium ionophore ionomycin, was significantly inhibited by 10 and 100 pM adrenomedullin. In conclusion, adrenomedullin at picomolar concentrations directly inhibited insulin secretion from beta-cells. This effect is likely due to the inhibition of insulin exocytosis through the activation of PTX-sensitive G proteins.  相似文献   

20.
Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号