首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 13C NMR chemical shifts and spin-lattice relaxation times of D-galactosylsphingosine derivatives in CDCl3-CD3OD and in egg-yolk lecithin vesicles in D2O, and of N-acetylpsychosine micelles, are reported. Results with sonicated, unilamellar vesicles containing cerebroside and EYLa show that (1) cerebrosides decrease the fluidity of the lecithin bilayer membrane and have the greatest effect on the glycerol backbone and choline methyl carbons. (2) N-acetylpsychosine experiences a greater freedom of motion in the galactose region than does cerebroside and does not reduce the fluidity of the lecithin as much as cerebroside. (3) Ac-Psy/EYL vesicles formed are permeable to Yb3+ but cerebroside/lecithin vesicles are not. (4) The choline groups on the inner bilayer surface are less mobile than those on the outer surface according to preliminary T1 measurements of the Yb3+-separated resonances. (5) Yb3+-induced chemical shifts of choline methyl and choline CH2OP peaks in mixed cerebroside-lecithin vesicle systems indicate a small preference for cerebroside in the outside monolayer. The data show that these molecules have significant effects on bilayer conformational mobilities, particularly near the surface, and thus demonstrate one mechanism for modulation of cell surface properties by glycosphingolipids.  相似文献   

2.
Summary While both 31P and 113Cd are present at locations of interest in many different macromolecular systems, heteronuclear-detected relaxation measurements on these nuclei have been restrained by limitations in either resolution or signal-to-noise ratio. We have developed hetero TOCSY-based methods to overcome both of these problems. Two-dimensional versions of these experiments were utilized to measure 31P T1 and T2 values in DNA oligonucleotides; the additional resolution offered by a second dimension allowed determination of these values for most of the 31P resonances in a DNA dodecamer. The results from the experiments indicated that there was little significant variation in T1 values for the different phosphates in the DNA dodecamer; however, the T2 values showed a clear pattern, with lower values in the interior of the sequence than at the ends of the helix. Furthermore, a significant correlation between 31P chemical shifts and T2 values was observed. One-dimensional, frequency-selective versions of these experiments were also developed for use on systems containing a smaller number of heteronuclear spins. These methods were applied to investigate the heteronuclear relaxation properties of 113Cd in 113Cd2LAC9(61), a Cys6Zn2 DNA-binding domain. Data from the experiments confirm biochemical evidence that more significant differences occur in the metal-protein interactions between the two metal-binding sites than has been previously identified for proteins containing this motif.  相似文献   

3.
Abstract

Temperature dependencies of 1H non-selective NMR T1 and T2 relaxation times measured at two resonance frequencies and natural abundance l3C NMR relaxation times Tl and Tlr measured at room temperature have been studied in a set of dry and wet solid proteins—;Bacterial RNase, lysozyme and Bovine serum albumin (BSA). The proton and carbon data were interpreted in terms of a model supposing three kinds of internal motions in a protein. These are rotation of the methyl protons around the axis of symmetry of the methyl group, and fast and slow oscillations of all atoms. The correlation times of these motions in solid state are found around 10?11, 10?9 and 10?6 s, respectively. All kinds of motion are characterized by the inhomogeneous distribution of the correlation times. The protein dehydration affects only the slow internal motion. The amplitude of the slow motion obtained from the carbon data is substantially less than that obtained from the proton data. This difference can be explained by taking into account different relative inter- and intra- chemical group contributions to the proton and carbon second moments. The comparison of the solid state and solution proton relaxation data showed that the internal protein dynamics in these states is different: the slow motion seems to be few orders of magnitude faster in solution.  相似文献   

4.
Discrimination between12C and13C by marine plants   总被引:2,自引:0,他引:2  
Summary The natural abundance13C/12C ratios (as δ13C) of organic matter of marine macroalgae from Fife and Angus (East Scotland) were measured for comparison with the species' ability to use CO2 and HCO 3 - for photosynthesis, as deduced from previously published pH-drift measurements. There was a clear difference in δ13C values for species able or unable to use HCO 3 - . Six species of Chlorophyta, 12 species of Phaeophyta and 8 species of Rhodophyta that the pH-drift data suggested could use HCO 3 - had δ13C values in the range -8.81‰ to -22.55‰. A further 6 species of Rhodophyta which the pH-drift data suggested could only use CO2 had δ13C values in the range -29.90‰ to-34.51‰. One of these six species (Lomentaria articulata) is intertidal; the other five are subtidal and so have no access to atmospheric CO2 to complicate the analysis. For these species, calculations based on the measured δ13C of the algae, the δ13C of CO2 in seawater, and the known13C/12C discrimination of CO2 diffusion and RUBISCO carboxylation suggest that only 15–21% of the limitation to photosynthesisin situ results from CO2 diffusion from the bulk medium to the plastids; the remaining 79–85% is associated with carboxylation reactions (and, via feedback effects, down-stream processes). This analysis has been extended for one of these five species,Delesseria sanguinea, by incorporating data onin situ specific growth rates, respiratory rates measured in the laboratory, and applying Fick's law of diffusion to calculate a boundary layer thickness of 17–24 μm. This value is reasonable for aDelesseria sanguinea frondin situ. For HCO 3 - -using marine macroalgae the range of δ13C values measured can be accommodated by a CO2 efflux from algal cells which range from 0.306 of the gross HCO 3 - influx forEnteromorpha intestinalis13C=-8.81‰) in a rockpool to 0.787 forChondrus crispus13C=-22.55‰). The relatively high computed CO2 efflux for those HCO 3 - -users with the more negative δ13C values implies a relatively high photon cost of C assimilation; the observed photon costs can be accommodated by assuming coupled, energy-independent inorganic carbon influx and efflux. The observed δ13C values are also interpreted in terms of water movement regimes and obtaining CO2 from the atmosphere. Published δ13C values for freshwater macrophytes were compared with the ability of the species to use CO2 and HCO 3 - and again there was an apparent separation in δ13C values for these two groups. δ13C values obtained for marine macroalgae for which no pH-drift data are available permit predictions, as yet untested, as to whether they use predominantly CO2 or HCO 3 -  相似文献   

5.
Carbonyl 13C′ relaxation is dominated by the contribution from the 13C′ chemical shift anisotropy (CSA). The relaxation rates provide useful and non-redundant structural information in addition to dynamic parameters. It is straightforward to acquire, and offers complimentary structural information to the 15N relaxation data. Furthermore, the non-axial nature of the 13C′ CSA tensor results in a T1/T2 value that depends on an additional angular variable even when the diffusion tensor of the protein molecule is axially symmetric. This dependence on an extra degree of freedom provides new geometrical information that is not available from the NH dipolar relaxation. A protocol that incorporates such structural restraints into NMR structure calculation was developed within the program Xplor-NIH. Its application was illustrated with the yeast Fis1 NMR structure. Refinement against the 13C′ T1/T2 improved the overall quality of the structure, as evaluated by cross-validation against the residual dipolar coupling as well as the 15N relaxation data. In addition, possible variations of the CSA tensor were addressed. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

7.
High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T 2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T 2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13T 2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions.  相似文献   

8.
The molecular conformations and dynamics of poly(L -prolyl), poly(hydroxyl-L -prolyl), poly(L -prolyl-glycyl), poly(hydroxyl-L -prolyl), and poly(glycyl-glycyl-L -prolyl-glycyl), in aqueous solution, have been studied using 13C pulse Fourier transform nmr spectroscopy. From a measurement of the intensities of major and minor resonances in the spectra of the copolypeptides, it was determined that 15–20% of the glycyl-prolyl and glycyl-hydroxyprolyl peptide bonds are cis. Effective rotational correlation times (τeff), obtained from measurements of spin-lattice relaxation times (T1) of individual backbone and side-chain carbons, demonstrated that backbone reorientation is approximately isotropic for the five polypeptides and is characterized by correlation times of ca. 0.3–0.6 nanoseconds as a result of rapid segmental motion. In a given polypeptide glycyl and pyrrolidine residues were found to have the same backbone correlation times, but backbone carbon τeff values did decrease as the glycyl content of the peptides increased. A semi-quantitative analysis of Cβ, Cγ, and Cδ correlation times suggests that rapid ring motion in both prolyl and hydroxyprolyl involves primarily Cγ and Cβ, with the prolyl ring being more mobile than the hydroxyprolyl ring.  相似文献   

9.
Summary The protein human carbonic anhydrase II (HCA II) has been isotopically labeled with 2H, 13C and 15N for high-resolution NMR assignment studies and pulse sequence development. To increase the sensitivity of several key 1H/13C/15N triple-resonance correlation experiments, 2H has been incorporated into HCA II in order to decrease the rates of 13C and 1HN T2 relaxation. NMR quantities of protein with essentially complete aliphatic 2H incorporation have been obtained by growth of E. coli in defined media containing D2O, [1,2-13C2, 99%] sodium acetate, and [15N, 99%] ammonium chloride. Complete aliphatic deuterium enrichment is optimal for 13C and 15N backbone NMR assignment studies, since the 13C and 1HN T2 relaxation times and, therefore, sensitivity are maximized. In addition, complete aliphatic deuteration increases both resolution and sensitivity by eliminating the differential 2H isotopic shift observed for partially deuterated CHnDm moieties.  相似文献   

10.
Self-reproduction and the ability to regulate their composition are two essential properties of terrestrial biotic systems. The identification of non-living systems that possess these properties can therefore contribute not only to our understanding of their functioning but also hint at possible prebiotic processes that led to the emergence of life. Growing lipid vesicles have been previously established as having the capacity to self-reproduce. Here it is demonstrated that vesicle self-reproduction can occur only at selected values of vesicle properties. We treat as an example a simple vesicle with membrane elastic properties defined by a membrane bending modulus and spontaneous curvature C0, whose volume variation depends on the membrane hydraulic permeability Lp and whose membrane area doubles in time Td. Vesicle self-reproduction is described as a process in which a growing vesicle first transforms its shape from a sphere into a budded shape of two spheres connected by a narrow neck, and then splits into two spherical daughter vesicles. We show that budded vesicle shapes can be reached only under the condition that TdLpC041.85. Thus, in a growing vesicle population containing vesicles of different composition, only the vesicles for which this condition is fulfilled can increase their number in a self-reproducing manner. The obtained results also suggest that at times much longer than Td the number of vesicles with their properties near the edge in the system parameter space defined by the minimum value of the product TdLpC04, will greatly exceed the number of any other vesicles.  相似文献   

11.
A formalism for extracting the conformations of a proline ring based on the bistable jump model of R. E. London [(1978) J. Am. Chem. Soc. 100 , 2678–2685] from 13C spin-lattice relaxation times (T1) is given. The method is such that the relaxation data are only partially used to generate the conformations; these conformations are constrained to satisfy the rest of the relaxation data and to yield acceptable ring geometry. An alternate equation for T1 of 13C nuclei to that of London is given. The formalism is illustrated through an example.  相似文献   

12.
Liposomes are ideal drug-delivery systems because they can alter the pharmacokinetic characteristics and biodistribution profile of the incorporated bioactive molecule. The effect of the aminoglycoside antibiotics, gentamicin (GN), tobramycin (TOB), and amikacin (AMI), on the thermodynamic properties of multilamellar vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied by using differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and 31P nuclear magnetic resonance (NMR) spectroscopy. The relationship between the structure of aminoglycoside antibiotics and their effect on the physical properties of the liposomal bilayers was investigated. The incorporation of the drugs was achieved and an osmotic gradient created by controlling the mole ratio of the drug inside to that outside of the DPPC vesicles so that [druginside DPPC]/[drugoutside DPPC] was 1:0, 1:0.2, 1:1, or 1:2.5. Incorporation of the drugs into liposomes caused the Tm to shift to a higher temperature and the δHm and δT1/2 values to decrease. The 2Amax and the order parameter (S), obtained from the EPR spectra, indicated that the fluidity of the liposomal membrane was affected by the type of drug and by the concentration used; GN and TOB decreased the fluidity and disturbed chain packing at mole ratios of [druginside DPPC]/[drugoutside DPPC] ranging from 1:0 to 1:0.2, while AMI increased the fluidity and disrupted chain packing at an osmotic gradient of 1:2.5. In conclusion, the molecular organization and thermotropic properties of the multilamellar DPPC vesicles were dependent on the osmotic gradient and structure of the aminoglycoside.  相似文献   

13.
13C Spin-lattice relaxation times T1 for individual carbon nuclei have been measured in a series of oligo-l-lysines, as well as lysine and glycine monomers. Anomalous behavior of profiles of T1 versus pD occurs for lysine and glycine; the T1 values of the Cα and CO groups are maximal at pH values corresponding to zwitterionic structures. This is interpreted in terms of the hindered intramolecular rotation around the carbonyl-Cα bond at acidic and basic pD values. Lysine monomer manifests a much less pronounced increase in T1 values from the α- to the ?-carbon than does lysine in an oligomer or polymer. The rate of reorientation of the Cα and Cβ carbons of N-terminal groups are faster than those of the central and C-terminal residues, especially at pD greater than 10 for tri-l-lysine hydrochloride and penta-l-lysine acetate. This is interpreted in terms of interaction between the ?-amino groups and the negatively charged carboxyl groups at pD < 10. Segmental motion is shown to make a significant contribution to relaxation of side-chain carbons, making them less sensitive to molecular size than the carbonyl carbons.  相似文献   

14.
Several lipophilic calmodulin antagonists (phenotiazines, butyrophenones and diphenylbutylpiperidines) inhibited Ca2+-induced loss of KCl from human red cells. However, the Ki values for this effect did not bear good correlation with the Ki values reported for well-known calmodulin-dependent systems. In addition, the inhibition was strongly dependent on the haematocrit and valinomycin-induced KCl fluxes were also affected. Added calmodulin did not have any effect on Ca2+-dependent 86Rb uptake by inside-out vesicles derived from red cell membranes whereas stimulation of Ca2+-dependent ATPase was apparent. Lipophilic anticalmodulins at high doses had all kinds of effects on 86Rb uptake by inside-out vesicles: increase, decrease or no change of the fraction of activated vesicles reached at submaximal Ca2+ concentrations, with or without modification of the relative rate of 86Rb uptake. The hydrophylic compound 48/80 decreased the fraction of activated vesicles reached at submaximal Ca2+ concentrations without affecting the relative rate of 86Rb uptake, but this effect took place only at concentrations 10-fold higher than the reported Ki for calmodulin-dependent systems. These results suggest that Ca2+-dependent K+ channels of red cells are not regulated by calmodulin.  相似文献   

15.
Careful experiments on the measurement of the intensity of the deuterium NMR signal for 2H2O in muscle and in its distillate were performed, and they showed that all 2H2O in muscles is “NMR visible.”The spin-lattice relaxation time (T1) of the water protons in the muscle and liver of mice and in egg white has been studied at six frequencies ranging from 4.5 to 6.0 MHz over the temperature range of +37 to −70°C. T1 values of deuterons in 2H2O of gastrocnemius muscle and liver of mice have been measured at three frequencies (4.5, 9.21 and 15.35 MHz) over the temperature range of +37 to −20°C. Calculations on T1 for both proton and deuteron have been made and compared with the experimental data. It is suggested that the reduction of the T1 values compared to pure water and the frequency dependence of T1 are due to water molecules in the hydration layer of the macromolecules, and that the bulk of water molecules in the biological tissues and egg white undergoes relaxation like ordinary liquid water.  相似文献   

16.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (Tm=24°C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at Tm but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at Tm. These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above Tm in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above Tm, because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

17.
Model bilayer systems from individual purified chloroplast thylakoid membrane lipids, from reconstituted mixtures of these purified lipids, and from leaf total polar lipid extracts have been prepared in water, and the longitudinal relaxation times (T's1) of the individual carbon atoms of the fatty acyl chains measured by 13C-NMR spectroscopy. The T's1 increasing distance of the carbon atoms from the polar headgroups in all cases, and as the results from each of the preparations are similar, all can be used as models of chloroplast membrane bilayers. Relaxation time measurements on intact chloroplast thylakoid membranes indicate the presence of chlorophyll resonances in the 13C-NMR spectrum of the membrane.  相似文献   

18.
In order to study the intracellular polyamine distribution in Escherichia coli, 13C-NMR spectra of [1,4-13C]putrescine were obtained after addition of the latter to intact bacteria. The 13C-enriched methylene signal underwent line broadening. When the cells were centrifuged after 90 min the cell-bound putrescine peak had a linewidth of 23 Hz, while the supernatant liquid showed an unbound putrescine signal with a linewidth smaller than 1 Hz. By using 13C-enriched internal standards it could be shown that the linewidening was not due to the heterogeneity of the medium or to an in vivo paramagnetic effect. Cell-bound putrescine was liberated by addition of trichloroacetic acid and was therefore non-covalently linked to macromolecular cell structures. Cell-bound [13C]putrescine could be displaced by addition of an excess of [12C]putrescine. When samples of membranes, soluble protein, DNA, tRNA and ribosomes from E. coli were incubated with [1,4-13C]putrescine, strong binding was detected only in the ribosomal and membrane fractions. The ribosome-putrescine complex showed properties similar to those determined with the intact cells. By measuring the nuclear Overhauser enhancements η, it was possible to estimate that only about 50% of the polyamine was linked to the macromolecules. Determination of the T1 values of free and ribosomal-bound putrescine allowed the calculation of a correlation time, τc = 4·10?7 s for the latter. T1 and τc value for the ribosome-putrescine complex were those expected for a motional regime of slowly tumbling molecules.  相似文献   

19.
Abstract

The structure of the hydrochloride of 5′-chlorocyclocytidine, a potent inhibitor of DNA synthesis, was determined by X-ray crystallography. The nucleoside crystallizes in the orthorhombic space group P212121 with cell dimensions a = 10.413(4), b = 13.236(5), c = 17.064(6) Å and with two independent molecules in the asymmetric unit (Z = 8). Atomic parameters were refined by full-matrix least squares to a final value of R = 0.053 for 2490 observed reflections. In both molecules the furanose ring has a C4′ endo/04′ exo (4 T 0) pucker. In molecule A the orientation of the -CH2Cl side chain is gauche. In molecule B the side chain is disordered: in 70% of these molecules the orientation is trans and in 30% it is gauche +. 1H NMR spectra indicate a conformational equilibrium between C4′ exo/04′ endo (4 T 0) and C4′ endo/C3′ exo (4 3 T) with a population ratio of 38:62. All three side chain rotamers occur in solution, the trans orientation contributing most. 1J(C, H) values for C1′ and C2′ are significantly higher than normal and can therefore be used as a diagnostic tool for the assignment of bridgehead carbon atoms in cyclonucleosides.  相似文献   

20.
13C1H high power double magnetic resonance spectroscopy was used to investigate the mobility of the collagen peptide backbone. [1-13C]- and [2-13C]-glycine-labeled collagen samples (with >50% enrichment in 13C) were prepared via chick calvaria culture. 13C n.m.r.2 spectra of labeled reconstituted collagen fibrils, of labeled helical collagen in solution, and of unlabeled bovine Achilles tendon collagen were obtained with scalar decoupling and with dipolar decoupling of protons. Proton-enhanced spectra were also obtained using cross-polarization techniques. n.m.r. parameters (linewidths, lineshapes, T1 values, nuclear Overhauser enhancements, and cross polarization enhancements) were measured for the labeled samples and for collagen in natural abundance. Comparison of 13C n.m.r. parameters for bovine Achilles tendon fibrils and for reconstituted chick calvaria collagen fibrils established that chick calvaria collagen is a good model for the molecular dynamics of collagen in vivo.Spin-lattice relaxation times and nuclear Overhauser enhancements for [1-13C]- and [2-13C]glycine-labeled collagen indicated that R1 ~2 × 107s?1 in solution, where R1 is the diffusion constant for reorientation about the long axis of the molecule. A substantially smaller value for R1 (2.6 × 106s?1) was calculated for an axially symmetric ellipsoid of revolution having dimensions appropriate to the collagen helix. The discrepancy between the rigid ellipsoid and n.m.r. values of R1 suggests that the collagen molecule undergoes torsional reorientation, as well as rod-like reorientation, about its long axis.The T1 and NOE values measured in the glycine-labeled fibrils show that rapid axial motion (R1 ~ 107s?1) persists in the fibrillar state. In the collagen fibril the full width of the glycyl carbonyl powder pattern is 103 p.p.m. This value is substantially smaller than the rigid lattice value, 144 p.p.m., which provides further evidence for motion in the fibril. The observed powder pattern is axially asymmetric, which shows that certain azimuthal orientations are energetically preferred in the fibril. Taken together, the n.m.r. data provide strong evidence that rapid reorientation of the helix backbone occurs in the fibrils. This result shows that formation of a fibrillar structure does not require the existence of a unique set of intermolecular interactions at the helical surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号