首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

2.
3.
Specificity is a crucial condition that hampers the application of non-viral vectors for cancer gene therapy. In a previous study, we developed an efficient gene vector, stearyl-CAMEL, using N-terminal stearylation of the antimicrobial peptide CAMEL. Substance P (SP), an 11-residue neuropeptide, rapidly enters cells after binding to the neurokinin-1 receptor (NK1R), which is expressed in many cancer cell lines. In this study, the NK1R-targeted gene vector stearyl-CMSP was constructed by conjugating SP to the C-terminus of stearyl-CAMEL. Our results indicated that stearyl-CMSP displayed significant transfection specificity for NK1R-expressing cells compared with that shown by stearyl-CAMEL. Accordingly, the stearyl-CMSP/p53 plasmid complexes had significantly higher antiproliferative activity against HEK293-NK1R cells than they did against HEK293 cells, while the stearyl-CAMEL/p53 plasmid complexes did not show this specificity in antiproliferative activity. Consequently, conjugation of the NK1R-targeted ligand SP is a simple and successful strategy to construct efficient cancer-targeted non-viral gene vectors.  相似文献   

4.
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.  相似文献   

5.
Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1(-/-) mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1(-/-) mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1(-/-) mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1-knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1-associated proteins.  相似文献   

6.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

7.
Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1(-/-) ), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation.  相似文献   

8.
9.
(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites. Both subtypes of [(125)I]NKA binding sites were sensitive to tachykinin NK(1) antagonists and agonists but also to the endogenous tachykinins NKA, neuropeptide K (NPK), and neuropeptide gamma (NPgamma). However, compounds of the septide family such as substance P(6-11) [SP(6-11)] and propionyl-[Met(O(2))(11)]SP(7-11) and some NK(1) antagonists, GR 82334, RP 67580, and CP 96345, had a much lower affinity for the new NK(1)-sensitive sites than for the septide-sensitive sites. The hypothalamus and colliculi possess only this new subtype of NK(1) site, whereas both types of [(125)I]NKA binding sites were found in the amygdala and some other brain structures. These results not only explain the central effects of septide or SP(6-11), but also those of NKA, NPK, and NPgamma, which can be selectively blocked by NK(1) receptor antagonists.  相似文献   

10.
Hydrogen sulphide (H(2)S) is synthesized from L-cysteine via the action of cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS). We have earlier shown that H(2)S acts as a mediator of inflammation. However the mechanism remains unclear. In this study, we investigated the presence of H(2)S and the expression of H(2)S synthesizing enzymes, CSE and CBS, in isolated mouse pancreatic acini. Pancreatic acinar cells from mice were incubated with or without caerulein (10(-7) M for 30 and 60 min). Caerulein increased the levels of H(2)S and CSE mRNA expression while CBS mRNA expression was decreased. In addition, cells pre-treated with DL-propargylglycine (PAG, 3 mM), a CSE inhibitor, reduced the formation of H(2)S in caerulein treated cells, suggesting that CSE may be the main enzyme involved in H(2)S formation in mouse acinar cells. Furthermore, substance P (SP) concentration in the acini and expression of SP gene (preprotachykinin-A, PPT-A) and neurokinin-1 receptor (NK-1R), the primary receptor for SP, are increased in secretagogue caerulein-treated acinar cells. Inhibition of endogenous production of H(2)S by PAG significantly suppressed SP concentration, PPT-A expression and NK1-R expression in the acini. To determine whether H(2)S itself provoked inflammation in acinar cells, the cells were treated with H(2)S donor drug, sodium hydrosulphide (NaHS), (10, 50 and 100 muM), that resulted in a significant increase in SP concentration and expression of PPT-A and NK1-R in acinar cells. These results suggest that the pro-inflammatory effect of H(2)S may be mediated by SP-NK-1R related pathway in mouse pancreatic acinar cells.  相似文献   

11.
Abstract: To define the effects of antisense oligonucleotides on spinal neurokinin 1 (NK1) receptor function in nociceptive processing, several antisense oligonucleotides directed against the NK1 receptor mRNA were intrathecally injected into rats via an implanted catheter, and their effect on the behavioural response to formalin injected into the paw was assessed. We observed that there was no significant reduction of pain behaviour or immunostaining of spinal NK1 receptors after repeated daily intrathecal treatment with an antisense oligonucleotide. However, spinal application of substance P (SP) in the antisense oligonucleotide-treated animals resulted in a profound and long-lasting reduction in the behavioural response to formalin injection, and a parallel reduction in the NK1 receptor immunoreactivity normally observed in spinal dorsal horn. Intrathecal SP in the control groups, i.e., rats treated with an oligonucleotide containing four mismatched bases, the corresponding sense oligonucleotide, a mixture of the sense and the antisense oligonucleotides, in each case had no effect. The effects of SP were blocked by NK1 receptor antagonists and were not mimicked by NMDA. The mechanism underlying these effects is not clear. It may be due to partial degradation of the internalised receptors, which cannot be replaced by newly synthesised receptors because of the action of the NK1 antisense oligonucleotide.  相似文献   

12.
Aberrant substance P/neurokinin‐1 receptor (SP/NK‐1R) system activation plays a critical role in various disorders, however, little is known about the expression and the detailed molecular mechanism of the SP and NK‐1R in gallbladder cancer (GBC). In this study, we firstly analyzed the expression and clinical significance of them in patients with GBC. Then, cellular assays were performed to clarify their biological role in GBC cells. Moreover, we investigated the molecular mechanisms regulated by SP/NK‐1R. Meanwhile, mice xenografted with human GBC cells were analyzed regarding the effects of SP/NK1R complex in vivo. Finally, patient samples were utilized to investigate the effect of SP/NK‐1R. The results showed that SP and NK‐1R were highly expressed in GBC. We found that SP strongly induced GBC cell proliferation, clone formation, migration and invasion, whereas antagonizing NK‐1R resulted in the opposite effects. Moreover, SP significantly enhanced the expression of NF‐κB p65 and the tumor‐associated cytokines, while, Akt inhibitor could reverse these effects. Further studies indicated that decreasing activation of NF‐κB or Akt diminished GBC cell proliferation and migration. In consistent with results, immunohistochemical staining showed high levels of Akt, NF‐κB and cytokines in tumor tissues. Most importantly, the similar conclusion was obtained in xenograft mouse model. Our findings demonstrate that NK‐1R, after binding with the endogenous agonist SP, could induce GBC cell migration and spreading via modulation of Akt/NF‐κB pathway.  相似文献   

13.
Recently, the cloning of a novel preprotachykinin gene (PPT-C) has been reported. This gene codes for a novel peptide named hemokinin 1 (HK-1). In contrast with the known tachykinins, which are exclusively expressed in neuronal tissues, PPT-C mRNA was detected primarily in hematopoietic cells. In this study, we pharmacologically characterised the effects of HK-1 using three tachykinin monoreceptor systems, namely the rabbit jugular vein (rbJV) for NK(1), the rabbit pulmonary artery (rbPA) for NK(2), and rat portal vein (rPV) for NK(3) receptors. In all these preparations substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) elicited concentration dependent contractions showing similar maximal effects and the following rank order of potency: SP > NKA = NKB in the rbJV, NKA > NKB > SP in the rbPA, and NKB > NKA > SP in the rPV. In those vessels HK-1 behaved as a full agonist displaying potencies similar (rbPA and rPV) or slightly higher (rbJV) than those of SP. In the rbJV, SR 140333, a selective NK(1) receptor antagonist, antagonised the effects of HK-1 and SP with similar high potencies (pK(B) 9.3 and 9.5, respectively). Similar results were obtained with the pseudopeptide NK(1) antagonist, MEN 11467 (pK(B) 8.8 and 8.6, respectively). Taken together, these data indicate that HK-1 behaves as a NK(1) preferring receptor agonist.  相似文献   

14.
15.
Ebner K  Singewald N 《Amino acids》2006,31(3):251-272
Summary. Substance P (SP) is one of the most abundant peptides in the central nervous system and has been implicated in a variety of physiological and pathophysiological processes including stress regulation, as well as affective and anxiety-related behaviour. Consistent with these functions, SP and its preferred neurokinin 1 (NK1) receptor has been found within brain areas known to be involved in the regulation of stress and anxiety responses. Aversive and stressful stimuli have been shown repeatedly to change SP brain tissue content, as well as NK1 receptor binding. More recently it has been demonstrated that emotional stressors increase SP efflux in specific limbic structures such as amygdala and septum and that the magnitude of this effect depends on the severity of the stressor. Depending on the brain area, an increase in intracerebral SP concentration (mimicked by SP microinjection) produces mainly anxiogenic-like responses in various behavioural tasks. Based on findings that SP transmission is stimulated under stressful or anxiety-provoking situations it was hypothesised that blockade of NK1 receptors may attenuate stress responses and exert anxiolytic-like effects. Preclinical and clinical studies have found evidence in favour of such an assumption. The status of this research is reviewed here.  相似文献   

16.
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.  相似文献   

17.
Traumatic heterotopic ossification (HO) is the abnormal formation of bone in soft tissues as a consequence of injury. However, the pathological mechanisms leading to traumatic HO remain unknown. Here, we report that aberrant expression of IL-17 promotes traumatic HO formation by activating β-catenin signalling in mouse model. We found that elevated IL-17 and β-catenin levels are correlated with a high degree of HO formation in specimens from patients and HO animals. We also show that IL-17 initiates and promotes HO progression in mice. Local injection of an IL-17 neutralizing antibody attenuates ectopic bone formation in a traumatic mouse model. IL-17 enhances the osteoblastic differentiation of mesenchymal stem cells (MSCs) by activating β-catenin signalling. Moreover, inhibition of IL-17R or β-catenin signalling by neutralizing antibodies or drugs prevents the osteogenic differentiation of isolated MSCs and decreases HO formation in mouse models. Together, our study identifies a novel role for active IL-17 as the inducer and promoter of ectopic bone formation and suggests that IL-17 inhibition might be a potential therapeutic target in traumatic HO.  相似文献   

18.
19.
20.
Substance P (SP) was reported to be associated with eczema and acts as a potent skin mast cell secretagogue. However, little is known of its expression in inflammatory cells in eczema and its ability in induction of mast cell accumulation. In the present study, we investigated expression of SP and neurokinin-1 receptor (NK1R) on peripheral blood leukocytes and mast cells from patients with eczema and influence of SP on mast cell accumulation by using flow cytometry analysis, trans-epithelial cell migration assay and mouse peritoneal model. The results showed that plasma SP and IL-17A levels in eczema patients were higher than that in healthy control subject. The percentages of SP+ and NK1R+ expression populations of monocytes, helper T cells, natural killer T cells and basophils in peripheral blood of eczema patients were markedly elevated. It was observed that not only absolute number of mast cells but also SP+ and NK1R+ mast cells are enhanced in the lesion skin of eczema. SP showed a potent chemoattractant action on mast cells as assessed by a mouse peritoneal model and a trans-endothelium cell migration assay. SP-induced mast cell accumulation appears a CD18/CD11a complex, l-selectin and ICAM-1-dependent event which can be blocked by a NK-1R antagonist RP67580. In conclusion, elevated expression of SP in patients with eczema and the ability of SP in induction of mast cell accumulation indicate strongly that SP is a potent proinflammatory mediator, which contributes to the pathogenesis of eczema. Inhibitors of SP and blockers of NK1R are likely useful agents for treatment of eczema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号