首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Lipopolysaccharide (LPS) is a highly proactive molecule that causes in vivo a systemic inflammatory response syndrome and activates in vitro the inflammatory pathway in different cellular types, including endothelial cells (EC). Because the proinflammatory status could lead to EC injury and apoptosis, the expression of proinflammatory genes must be finely regulated through the induction of protective genes. This study aimed at determining whether an LPS exposure is effective in inducing apoptosis in primary cultures of porcine aortic endothelial cells and in stimulating heat shock protein (Hsp)70 and Hsp32 production as well as vascular endothelial growth factor (VEGF) secretion. Cells between third and eighth passage were exposed to 10 microg/mL LPS for 1, 7, 15, and 24 hours (time-course experiments) or to 1, 10, and 100 microg/mL LPS for 7 and 15 hours (dose-response experiments). Apoptosis was not affected by 1 microg/mL LPS but significantly increased in a dose-dependent manner with the highest LPS doses. Furthermore, apoptosis rate increased only till 15 hours of LPS exposure. LPS stimulated VEGF secretion in a dose-dependent manner; its effect became significant after 7 hours and reached a plateau after 15 hours. Both Hsp70 and Hsp32 expressions were induced by LPS in a dose-dependent manner after 7 hours. Subsequent studies were addressed to evaluate the protective role of Hsp32, Hsp70, and VEGF. Hemin, an Hsp32 inducer (5, 20, 50 microM), and recombinant VEGF (100 and 200 ng/mL), were added to the culture 2 hours before LPS (10 microg/mL for 24 hours); to induce Hsp70 expression, cells were heat shocked (42 degrees C for 1 hour) 15 hours before LPS (10 microg/mL for 24 hours). Hemin exposure upregulated Hsp32 expression in a dose-dependent manner and protected cells against LPS-induced apoptosis. Heat shock (HS) stimulated Hsp70 expression but failed to reduce LPS-induced apoptosis; VEGF addition did not protect cells against LPS-induced apoptosis at any dose tested. Nevertheless, when treatments were associated, a reduction of LPS-induced apoptosis was always observed; the reduction was maximal when all the treatments (HS + Hemin + VEGF) were associated. In conclusion, this study demonstrates that LPS is effective in evoking "the heat shock response" with an increase of nonspecific protective molecules (namely Hsp70 and Hsp32) and of VEGF, a specific EC growth factor. The protective role of Hsp32 was also demonstrated. Further investigations are required to clarify the synergic effect of Hsp32, Hsp70, and VEGF, thus elucidating the possible interaction between these molecules.  相似文献   

2.
3.
Kumar Y  Tatu U 《Proteomics》2003,3(4):513-526
Multiple stress proteins are recruited in response to stress in living cells. There are limited reports in the literature analyzing multiple stress protein shifts and their functional consequences on stress response. Using two-dimensional electrophoresis we have analyzed shifts in stress protein profiles in response to energy deprivation as a model of ischemic injury to kidneys. A group of chaperones and stress-induced mitogen activated protein (MAP) kinases were analyzed. In addition to examining stress protein induction and phosphorylation we have also examined the mechanism of cytoprotection by heat shock protein 70 (Hsp70). Our results show that, of the different stress proteins examined, only binding protein (BiP) and Hsp70 were significantly induced upon energy deprivation. Other stress proteins, including Hsp27, calnexin, Hsp90 and ERp57 showed alterations in their phosphorylation profiles. Three different MAP kinases, namely p38, extracellular signal regulated kisase and c-jun N-terminal kinase (JNK) were activated in response to energy deprivation. While JNK activation was linked to apoptosis, activated-p38 was involved in phosphorylation of Hsp27. Study of inhibitors of Hsp70 induction or pre-induction of Hsp70 indicated that induced Hsp70 was involved in the suppression of JNK activation thereby inhibiting apoptotic cell death. Our results provide important insights into the flux in stress protein profiles in response to simulated ischemia and highlight the antiapoptotic, cytoprotective mechanism of Hsp70 action.  相似文献   

4.
Limitation of damage after ischemia and reperfusion injury to the myocardium remains an elusive clinical goal. Previous studies have suggested that molecular chaperones, which include members of the heat shock protein (Hsp) family, may have cardioprotective effects, although the protective role of endogenous chaperones has not been well documented. CHIP (carboxyl terminus of Hsp70-interacting protein) is a cochaperone/ubiquitin ligase that integrates the response to stress at multiple levels. We tested the response of CHIP(-/-) mice to in vivo ischemia and reperfusion injury induced by left anterior descending coronary artery ligation. Compared with wild-type littermates, CHIP(-/-) mice had decreased survival and increased incidence of arrhythmias during reperfusion. The size of myocardial infarction, as assessed by the ratio of infarct area to area at risk, was 50% greater in CHIP(-/-) mice. Increased infarct size was accompanied by impaired upregulation of the chaperone Hsp70 after ischemia-reperfusion injury. In situ analysis also indicated that hearts of CHIP(-/-) mice were more prone to develop apoptosis in cardiomyocytes and especially endothelial cells of intramural vessels. Previous studies have found that CHIP plays a central role in maintaining protein quality control and coordinating the response to stress. The present data indicate that these functions of CHIP provide a critical cardioprotective effect in the setting of ischemia-reperfusion injury due in part to increased apoptosis in cardiac cells. Quality control mechanisms therefore may be underappreciated clinical targets for maximizing myocardial protection after injury.  相似文献   

5.
Ischemia/reperfusion and hypoxia/reoxygenation of the heart both induce shedding of the coronary endothelial glycocalyx. The processes leading from an oxygen deficit to shedding are unknown. An involvement of resident perivascular cardiac mast cells has been proposed. We hypothesized that either adenosine or inosine or both, generated by nucleotide catabolism, attain the concentrations in the interstitial space sufficient to stimulate A3 receptors of mast cells during both myocardial ischemia/reperfusion and hypoxia/reoxygenation. Isolated hearts of guinea pigs were subjected to either normoxic perfusion (hemoglobin-free Krebs-Henseleit buffer equilibrated with 95% oxygen), 20 minutes hypoxic perfusion (buffer equilibrated with 21% oxygen) followed by 20 minutes reoxygenation, or 20 minutes stopped-flow ischemia followed by 20 minutes normoxic reperfusion (n = 7 each). Coronary venous effluent was collected separately from so-called transudate, a mixture of interstitial fluid and lymphatic fluid appearing on the epicardial surface. Adenosine and inosine were determined in both fluid compartments using high-performance liquid chromatography. Damage to the glycocalyx was evident after ischemia/reperfusion and hypoxia/reoxygenation. Adenosine concentrations rose to a level of 1 μM in coronary effluent during hypoxic perfusion, but remained one order of magnitude lower in the interstitial fluid. There was only a small rise in the level during postischemic perfusion. In contrast, inosine peaked at over 10 μM in interstitial fluid during hypoxia and also during reperfusion, while effluent levels remained relatively unchanged at lower levels. We conclude that only inosine attains levels in the interstitial fluid of hypoxic and postischemic hearts that are sufficient to explain the activation of mast cells via stimulation of A3-type receptors.  相似文献   

6.
Ligation of Fas induces an apoptotic program in Jurkat cells (Jd). We describe a Jurkat T cell variant (Jr) which shows total resistance to Fas-mediated apoptosis but which exhibits sensitivity to non-death-receptor pro-apoptotic stimuli such as staurosporine. Resistance to Fas-induced apoptosis in Jr cells is correlated with high expression of Hsps. A prior heat-shock increases Hsp27 and 70 expression and protects Jd and Jr cells from Fas- and staurosporine-induced apoptosis. Staurosporine, but not the anti-Fas antibody CH11, abrogates constitutive Hsp70 expression at 37 degrees C and staurosporine also inhibit Hsp27 expression in Jd and Jr cells at 42 degrees C. These data suggest that constitutive expression of Hsp27 inhibits Fas-mediated apoptosis, but only induced expression of Hsp70 can protect T cells from staurosporine-induced apoptosis. Thus, Hsp27 could play a role in the regulation of death receptor-mediated apoptosis, while Hsp70 could regulate mitochondrial-dependent cell death.  相似文献   

7.
We previously demonstrated the protective effect of inducible heat shock protein 70 (Hsp70) against gamma radiation. Herein, we extend our studies on the possible role of Hsp70 to ionizing radiation-induced cell cycle regulation. The growth rate of inducible hsp70-transfected cells was 2-3 hours slower than that of control cells. Flow cytometric analysis of cells at G1 phase synchronized by serum starvation also showed the growth delay in the Hsp70-overexpressing cells. In addition, reduced cyclin D1 and Cdc2 levels and increased dephosphorylated phosphoretinoblastoma (pRb) were observed in inducible hsp70-transfected cells, which were probably responsible for the reduction of cell growth. To find out if inducible Hsp70-mediated growth delay affected radiation-induced cell cycle regulation, flow cytometric and molecular analyses of cell cycle regulatory proteins and their kinase were performed. The radiation-induced G2/M arrest was found to be inhibited by Hsp70 overexpression and reduced p21Waf induction and its kinase activity by radiation in the Hsp70-transfected cells. In addition, radiation-induced cyclin A or B1 expressions together with their kinase activities were also inhibited by inducible Hsp70, which represented reduced mitotic cell death. Indeed, hsp70 transfectants showed less induction of radiation-induced apoptosis. When treated with nocodazole, radiation-induced mitotic arrest was inhibited by inducible Hsp70. These results strongly suggested that inducible Hsp70 modified growth delay (increased G1 phase) and reduced G2/M phase arrest, subsequently resulting in inhibition of radiation-induced cell death.  相似文献   

8.
Six hours after insulin treatment, hearts express heat shock protein 70 (Hsp70) and have improved contractile function after ischemia-reperfusion injury. In this study we examined hearts 1 h after insulin treatment for contractile function and for expression of Hsp70 and Hsp27. Adult, male Sprague-Dawley rats were assigned to groups: 1) sham, 2) control, 3) insulin injected (200 microU/g body wt), 4) heat shock treated (core body temperature, 42 degrees C for 15 min), and 5) heat shock and insulin treated. At 1 h after these treatments, hearts were isolated, equilibrated to Langendorff perfusion for 30 min, and then subjected for 30 min no-flow global ischemia (37 degrees C) followed by 2 h of reperfusion. Insulin-treated hearts had significantly increased contractile function compared with control hearts. At 1 h after insulin treatment, a minimal change in Hsp70 and Hsp27 content were detected. By 3 h after insulin treatment, a significant increase in Hsp70, but not Hsp27, was detected by Western blot analysis. By immunofluorescence, minimal Hsp70 was detected in insulin-treated hearts, whereas Hsp27 was detected in all hearts, indicative of its constitutive expression. Phosphospecific isoforms of Hsp27 were detected in insulin-, heat shock-, and heat shock and insulin-treated hearts. After ischemia and reperfusion, the insulin-treated hearts had significantly elevated levels of phosphorylated Hsp27. Inhibition of p38 MAPK with SB-203580 blocked the insulin-induced phosphorylation of Hsp27 and the improved functional recovery. In conclusion, insulin induces an apparent rapid phosphorylation of Hsp27 that is associated with improved functional recovery after ischemia-reperfusion injury.  相似文献   

9.
Previous studies have demonstrated that thiamine (vitamin B1) has a cytoprotective effect against ischemic damage to the heart, and that heat shock protein 70 (Hsp70) is capable of protecting cardiac cells from lethal ischemia/hypoxia. We show here that thiamine has a cytoprotective effect on cultured neonatal rat cardiomyocytes under hypoxic insult, and also protects the cardiomyocytes against hypoxia-induced apoptosis; caspase-3 activation, PARP cleavage and DNA fragmentation are all inhibited. Moreover, it increases the level of Hsp70 protein in the cardiomyocytes even under prolonged hypoxic stress and its effects on hypoxia-induced cardiac cell death are antagonized by an Hsp70 inhibitor. These results suggest that the cytoprotective effect of thiamine in cardiomyocytes under hypoxic stress is due to its ability to induce Hsp70.  相似文献   

10.
心肌特异性高表达热休克蛋白27转基因鼠建立   总被引:3,自引:0,他引:3  
目的 建立人热休克蛋白27(heat shock protein 27, Hsp27)基因在小鼠心肌特异性表达的转基因鼠模型。 方法 将人心肌Hsp27cDNA插入含有心肌特异性表达启动子αMHC的pBSⅡ-SK+载体中,限制性内切酶EcoRI酶切、纯化后,获得含有αMHC启动子-Hsp27cDNA-HGH polyA的线性DNA片段,以显微注射法将目的基因导入受精卵, PCR筛选基因型,Western Blot鉴定转移基因的表达和表达的组织特异性。结果和结论 共获得两个转基因系小鼠,均呈心肌组织特异性高表达。  相似文献   

11.
In this study, we kept BALB/c mice on a hyperlipidic diet for 120 days and then assessed the predisposition to apoptosis and the appearance of heat shock protein (Hsp) on splenic lymphocytes. By immunoblot analysis, bands corresponding to Hsp 60 and Hsp 70 in cells from mice kept on a saturated fatty acid diet showed a greater expression already after 1 month while two other bands, which correspond to Hsp 25 and Hsp 27, were slightly present after 1 month of treatment. In cells from mice kept on a diet rich in unsaturated fatty acid, there was a marked expression of Hsp 25 and Hsp 27 after only 30 days of treatment, which was maintained constant for up to 4 months; while for bands corresponding to Hsp 60 and Hsp 70, a significant minor signal was only detectable after 2-4 months from the beginning of the treatment. Splenic lymphocytes from animals kept on a lipidic diet containing saturated fatty acids were more susceptible to death by apoptosis, while cells of animals treated with unsaturated fatty acid were shown to be more resistant.  相似文献   

12.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.  相似文献   

13.
14.
It is well established that liver ischemia-reperfusion induces the expression of heat shock protein (HSP) 70. However, the biological function of HSP70 in this injury is unclear. In this study, we sought to determine the role of HSP70 in hepatic ischemia-reperfusion injury in mice. Male mice were subjected to 90 min of partial hepatic ischemia followed by up to 8 h of reperfusion. HSP70 was rapidly upregulated after reperfusion. To explore the function of HSP70, sodium arsenite (8 mg/kg iv) was injected before surgery. We found that this dose induced HSP70 expression within 6 h of treatment. Induction of HSP70 with arsenite resulted in a >50% reduction in liver injury as determined by serum transaminases and histology. In addition, arsenite similarly reduced liver neutrophil recruitment and liver nuclear factor-kappaB activation, and attenuated serum levels of tumor necrosis factor-alpha and macrophage inflammatory protein-2, but increased levels of interleukin (IL)-6. In HSP70 knockout mice, arsenite did not protect against liver injury but did reduce liver neutrophil accumulation. Arsenite-induced reductions in neutrophil accumulation in HSP70 knockout mice were found to be mediated by IL-6. To determine whether extracellular HSP70 contributed to the injury, recombinant HSP70 was injected before surgery. Intravenous injection of 10 microg of recombinant HSP70 had no effect on liver injury after ischemia-reperfusion. The data suggest that intracellular HSP70 is directly hepatoprotective during ischemia-reperfusion injury and that extracellular HSP70 is not a significant contributor to the injury response in this model. Targeted induction of HSP70 may represent a potential therapeutic option for postischemic liver injury.  相似文献   

15.
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.  相似文献   

16.
17.
18.
Heat shock or transfection with heat shock protein 70 (Hsp70) genes has been shown to protect tumor cell lines against immune mechanisms of cytotoxicity. We have reported previously that heat shock confers resistance to CTL in the rat myeloma cell line Y3 that is Hsp70 defective. Evidence is now presented that Hsp70 is able to prevent the induction of the resistant phenotype. In Con A-stimulated lymphocytes and in lymphocyte x Y3 somatic cell hybrid clones a severe, non-Hsp70-inducing heat shock elicits resistance to CTL in contrast to a heat shock that results in Hsp70 expression. Thus, Hsp70 expression appears to be negatively associated with the development of resistance. Furthermore, loading of Y3 cells with recombinant Hsp70 protein before heat shock is able to prevent resistance. Because apoptosis induced in Y3 cells by heat shock is not affected, Hsp70 appears to interfere selectively with the CTL-induced lethal pathway that is found to be calcium but not caspase dependent. It is suggested that after heat shock Hsp70 enhances the CTL-induced apoptotic pathway by chaperoning certain proteins in the target cell that are involved in the execution of cell death. Thus, although shown to confer protection against many cytotoxic mechanisms, Hsp70 does not appear to be generally cytoprotective. This observation could also be of relevance when interpreting the effectiveness of tumor immunity.  相似文献   

19.
Previous studies showed that Toll-like receptor 4 (TLR4) modulates the myocardial inflammatory response to ischemia-reperfusion injury, and we recently found that cytokines link TLR4 to postischemic cardiac dysfunction. Although TLR4 can be activated in cultured cells by endogenous agents including heat shock protein 70, how it is activated during myocardial ischemia-reperfusion is unknown. In the present study, we examined 1) whether heat shock cognate protein 70 (HSC70), which is constitutively expressed in the myocardium, is released during ischemia-reperfusion; 2) whether extracellular HSC70 induces the myocardial inflammatory response and modulates cardiac function; and 3) whether HSC70 exerts these effects via TLR4. We subjected isolated mouse hearts to global ischemia-reperfusion via the Langendorff technique. Immunoblotting and immunostaining detected the release of HSC70 from the myocardium during reperfusion. Treatment with an antibody specific to HSC70 suppressed myocardial cytokine expression and improved cardiac functional recovery after ischemia-reperfusion. Recombinant HSC70 induced NF-kappaB activation and cytokine expression and depressed myocardial contractility in a TLR4-dependent manner. These effects required the substrate-binding domain of HSC70. Fluorescence resonance energy transfer analysis of isolated macrophages demonstrated that extracellular HSC70 interacts with TLR4. Therefore, this study demonstrates for the first time that 1) the myocardium releases HSC70 during ischemia-reperfusion, 2) extracellular HSC70 contributes to the postischemic myocardial inflammatory response and to cardiac dysfunction, 3) HSC70 exerts these effects through a TLR4-dependent mechanism, and 4) the substrate-binding domain of HSC70 is required to induce these effects. Thus extracellular HSC70 plays a critical role in regulating the myocardial innate immune response and cardiac function after ischemia-reperfusion.  相似文献   

20.
Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号