首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The period (per) and timeless (tim) genes play a central role in the Drosophila circadian clock mechanism. PERIOD (PER) and TIMELESS (TIM) proteins periodically accumulate in the nuclei of pace-making cells in the fly brain and many cells in peripheral organs. In contrast, TIM and PER in the ovarian follicle cells remain cytoplasmic and do not show daily oscillations in their levels. Moreover, TIM is not light sensitive in the ovary, while it is highly sensitive to this input in circadian tissues. The mechanism underlying this intriguing difference is addressed here. It is demonstrated that the circadian photoreceptor CRYPTOCHROME (CRY) is not expressed in ovarian tissues. Remarkably, ectopic cry expression in the ovary is sufficient to cause degradation of TIM after exposure to light. In addition, PER levels are reduced in response to light when CRY is present, as observed in circadian cells. Hence, CRY is the key component of the light input pathway missing in the ovary. However, the factors regulating PER and TIM levels downstream of light/cry action appear to be present in this non-circadian organ.  相似文献   

2.
3.
4.
Extraretinal photoreception is a common input route for light resetting signals into the circadian clock of animals. In Drosophila melanogaster, substantial circadian light inputs are mediated via the blue light photoreceptor CRYPTOCHROME (CRY) expressed in clock neurons within the brain. The current model predicts that, upon light activation, CRY interacts with the clock proteins TIMELESS (TIM) and PERIOD (PER), thereby inducing their degradation, which in turn leads to a resetting of the molecular oscillations within the circadian clock. Here the authors investigate the function of another putative extraretinal circadian photoreceptor, the Hofbauer-Buchner eyelet (H-B eyelet), located between the retina and the medulla in the fly optic lobes. Blocking synaptic transmission between the H-B eyelet and its potential target cells, the ventral circadian pacemaker neurons, impaired the flies' ability to resynchronize their behavior under jet-lag conditions in the context of nonfunctional retinal photoreception and a mutation in the CRY-encoding gene. The same manipulation also affected synchronized expression of the clock proteins TIM and PER in different subsets of the clock neurons. This shows that synaptic communication between the H-B eyelet and clock neurons contributes to synchronization of molecular and behavioral rhythms and confirms that the H-B eyelet functions as a circadian photoreceptor. Blockage of synaptic transmission from the H-B eyelet in the presence of functional compound eyes and the absence of CRY also results in increased numbers of flies that are unable to synchronize to extreme photoperiods, supplying independent proof for the role of the H-B eyelet as a circadian photoreceptor.  相似文献   

5.
6.
7.
8.
9.
Yuan Q  Lin F  Zheng X  Sehgal A 《Neuron》2005,47(1):115-127
Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to light. Effects of d5-HT1B are synergistic with a mutation in the circadian photoreceptor cryptochrome (CRY) and are mediated by SHAGGY (SGG), Drosophila glycogen synthase kinase 3beta (GSK3beta), which phosphorylates TIM. Levels of serotonin are decreased in flies maintained in extended constant darkness, suggesting that modulation of the clock by serotonin may vary under different environmental conditions. These data identify a molecular connection between serotonin signaling and the central clock component TIM and suggest a homeostatic mechanism for the regulation of circadian photosensitivity in Drosophila.  相似文献   

10.
11.
12.
The clock gene machinery controls cellular metabolism, proliferation, and key functions, such as DNA damage recognition and repair. Dysfunction of the circadian clock is involved in tumorigenesis, and altered expression of some clock genes has been found in cancer patients. The aim of this study was to evaluate the expression levels of core clock genes in colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (qPCR) was used to examine ARNTL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2, Timeless (TIM), TIPIN, and CSNK1? expression levels in the tumor tissue and matched apparently healthy mucosa of CRC patients. In the tumor tissue of CRC patients, compared to their matched healthy mucosa, expression levels of ARNTL1 (p=.002), PER1 (p=.002), PER2 (p=.011), PER3 (p=.003), and CRY2 (p=.012) were lower, whereas the expression level of TIM (p=.044) was higher. No significant difference was observed in the expression levels of CLOCK (p=.778), CRY1 (p=.600), CSNK1 (p=.903), and TIPIN (p=.136). As to the clinical and pathological features, a significant association was found between low CRY1 expression levels in tumor mucosa and age (p=.026), and female sex (p=.005), whereas high CRY1 expression levels in tumor mucosa were associated with cancer location in the distal colon (p?=?.015). Moreover, high TIM mRNA levels in the tumor mucosa were prevalent whenever proximal lymph nodes were involved (p= .013) and associated with TNM stages III-IV (p=.005) and microsatellite instability (p=.015). Significantly poorer survival rates were evidenced for CRC patients with lower expression in the tumor tissue of PER1 (p=.010), PER3 (p= .010), and CSNKIE (p=.024). In conclusion, abnormal expression levels of core clock genes in CRC tissue may be related to the process of tumorigenesis and exert an influence on host/tumor interactions.  相似文献   

13.
14.
B Kloss  A Rothenfluh  M W Young  L Saez 《Neuron》2001,30(3):699-706
The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localization are nevertheless observed in clock-containing cells of the fly head. These localization rhythms accompany formation of protein complexes that include PER, TIM, and DBT, and reflect periodic redistribution between the nucleus and the cytoplasm. Nuclear phosphorylation of PER is strongly enhanced when TIM is removed from PER/TIM/DBT complexes. The varying associations of PER, DBT and TIM appear to determine the onset and duration of nuclear PER function within the Drosophila clock.  相似文献   

15.
16.
Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.  相似文献   

17.
Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.  相似文献   

18.
19.
20.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号