共查询到14条相似文献,搜索用时 15 毫秒
1.
Tandem repetitive DNA sequences such as minisatellites include the most polymorphic loci yet identified in the human genome. The high mutation rates at many of these loci are driven by incompletely understood recombination-based mechanisms that operate in the germline. To analyse aspects of minisatellite mutation processes and general eukaryotic recombination in meiosis that cannot be studied in humans or other mammals, including crosstalk and interplay between all four chromatids, we have previously constructed a eukaryotic model system, enabling the analysis of all four products of meiosis. In this system we have integrated alleles of the human minisatellite MS32, flanked by synthetic markers, in the vicinity of a meiotic recombination hot spot in chromosome III of Saccharomyces cerevisiae. In the present study, tetrad analysis showed that gene conversion is the predominant and possibly the universal pathway leading to interallelic transfer of repeats, with or without exchange of flanking regions. The data also suggest a hyper-recombinogenic state, triggered by interallelic mutation processes which generate a cascade of mutant alleles in the same meiosis. A number of tetrads contained identical mutant alleles of meiotic origin. Several tetrads could not be explained by the current models for minisatellite mutation. Accordingly, we here present a modified model based on the successive repair of multiple double-strand breaks. 相似文献
2.
MS1 is one of the most variable minisatellites so far isolated from the human genome. We have previously reported an MS1
length-mutant frequency of 29.6% in overnight cultures of haploid yeast cells carrying a 1.35 kb MS1 allele. Here we present
data on the instability of alleles with lengths ranging from 0.15 kb to 2.05 kb, which revealed a threshold of 0.75 kb, at
and below which MS1 alleles were entirely stable. Larger alleles exhibited a length-related increase in mutation frequency.
Chromosomal integration of various MS1 alleles, isolated from bacterial transformants, in haploid yeast cells also revealed
a threshold for the onset of instability and a higher degree of mutability for longer alleles. DNA sequencing of alleles showed
that the length changes were due to mutational events involving repeat units in the central region of MS1 which is composed
of two variant repeat units only. The similarity between MS1 mutations in yeast and humans argues that yeast represents a
suitable model organism for mechanistic studies on mutations occurring in human minisatellites.
Received: 1 July 1996 / Accepted: 11 October 1996 相似文献
3.
Certain minisatellites exhibit hypervariability with respect to the number of repeat units and, thus, allele length. Such polymorphism is generated by germline-specific recombinational events that occur at high frequencies and lead to the gain or loss of repeat units. In order to elucidate the molecular details of mutagenesis in minisatellites, we have integrated human minisatellites into the yeast genome in the vicinity of a hotspot for meiotic double-strand breaks (DSBs). Here, we describe the results of tetrad analyses of mutations in the human MS205 minisatellite in yeast strains heterozygous for alleles composed of 51 and 31 repeat units, as well as in a strain homozygous for the same 51 repeat unit allele. The length-mutation rate was twice as high in the heterozygous strain as in the homozygous strain, suggesting that sequence divergence between alleles enhances the generation of length mutations. In the case of heterozygotes, the frequency of length mutants resulting from inter-allelic exchange was significantly higher in tetrads with three viable spores than in tetrads with four viable spores, indicating that there is a higher probability for spore mortality in tetrads originating from meioses during which inter-allelic exchange of repeat units occurs. In an attempt to explain these findings, we propose a model for minisatellite mutation involving recombination, in which sequence divergence between alleles results in a heteroduplex containing numerous mismatches. We suggest that convergent mismatch-repair tracts in this heteroduplex give rise to a DSB that may be repaired by an additional round of recombination resulting in mutation of a third allele, or be lethal if such recombination fails. It appears probable that the formation of such additional mutants is the major explanation for the difference in meiotic length-mutation rates between the heterozygous and homozygous yeast strains, and that this phenomenon contributes to high germline length-mutation frequencies at minisatellites in humans. 相似文献
4.
Liebe B Petukhova G Barchi M Bellani M Braselmann H Nakano T Pandita TK Jasin M Fornace A Meistrich ML Baarends WM Schimenti J de Lange T Keeney S Camerini-Otero RD Scherthan H 《Experimental cell research》2006,312(19):3768-3781
Meiosis pairs and segregates homologous chromosomes and thereby forms haploid germ cells to compensate the genome doubling at fertilization. Homologue pairing in many eukaryotic species depends on formation of DNA double strand breaks (DSBs) during early prophase I when telomeres begin to cluster at the nuclear periphery (bouquet stage). By fluorescence in situ hybridization criteria, we observe that mid-preleptotene and bouquet stage frequencies are altered in male mice deficient for proteins required for recombination, ubiquitin conjugation and telomere length control. The generally low frequencies of mid-preleptotene spermatocytes were significantly increased in male mice lacking recombination proteins SPO11, MEI1, MLH1, KU80, ubiquitin conjugating enzyme HR6B, and in mice with only one copy of the telomere length regulator Terf1. The bouquet stage was significantly enriched in Atm(-/-), Spo11(-/-), Mei1(m1Jcs/m1Jcs), Mlh1(-/-), Terf1(+/-) and Hr6b(-/-) spermatogenesis, but not in mice lacking recombination proteins DMC1 and HOP2, the non-homologous end-joining DNA repair factor KU80 and the ATM downstream effector GADD45a. Mice defective in spermiogenesis (Tnp1(-/-), Gmcl1(-/-), Asm(-/-)) showed wild-type mid-preleptotene and bouquet frequencies. A low frequency of bouquet spermatocytes in Spo11(-/-)Atm(-/-) spermatogenesis suggests that DSBs contribute to the Atm(-/-)-correlated bouquet stage exit defect. Insignificant changes of bouquet frequencies in mice with defects in early stages of DSB repair (Dmc1(-/-), Hop2(-/-)) suggest that there is an ATM-specific influence on bouquet stage duration. Altogether, it appears that several pathways influence telomere dynamics in mammalian meiosis. 相似文献
5.
In organisms with chiasmatic meiosis two different relationships have been described between crossing over and synapsis: in
one group of organisms synapsis depends on the initiation of meiotic recombination while in the other group it is independent
of this initiation. These patterns have been observed mainly in organisms where all meiotic bivalents in the set have similar
behaviors. In some heteropteran insects a pair of chromosomes named m chromosomes is known to behave differently from autosomes
regarding synapsis and recombination. Here we used immunodetection of a synaptonemal complex component and acid-fixed squashes
to investigate the conduct of the small m chromosome pair during the male meiosis in the coreid bug Holhymenia rubiginosa. We found that the m chromosomes form a synaptonemal complex during pachytene, but they are not attached by a chiasma in
diakinesis. On the other hand, the autosomal bivalents synapse and recombine regularly. The co-existence of these variant
chromosome behaviors during meiosis I add further evidence to the absence of unique patterns regarding the interdependence
of synapsis and recombination. 相似文献
6.
7.
We present the characteristics of the Csm1 (Spo86) protein of Saccharomyces cerevisiae that are important for meiotic division. The level of Csm1p does not change throughout the cell cycle, but this protein is absent in mature spores. Deletion of CSM1 causes incorrect spore formation and meiotic chromosome missegregation together with increased sensitivity of vegetative cells to benomyl and manganese. In a two-hybrid analysis with Csm1p as bait, we detected interactions with three members of the Mcm2-7 family of proteins involved in the initiation of DNA replication, and with Clf1p also implicated in replication. The Csm1p-Mcm3, Mcm5 and Mcm7p interactions were confirmed by co-immunoprecipitation. Three other interacting proteins, Mgs1p, Ulp2, and Plp2, participate in chromosome assembling and segregation, whereas the function of two others has not been established. Genetic experiments showed that the two-hybrid isolates MGS1, CLF1, MCM3, 5, 7 (CDC47), and YDL089w, when overexpressed, partially suppress the csm1Delta/csm1Delta sporulation defect. We propose that, besides its other functions, Csm1p may be involved in premeiotic DNA replication. 相似文献
8.
Hakan Cederberg Eva Agurell Mona Hedenskog Ulf Rannug 《Molecular & general genetics : MGG》1993,238(1-2):38-42
Minisatellites comprise arrays of tandemly repeated short DNA sequences which show extensive variation in repeat unit number. The mechanisms that underlie this length variation are not understood. In order to study processes influencing length changes of minisatellites, we integrated the human minisatellite MS1 into a haploid strain of the yeast Saccharomyces cerevisiae. Frequent spontaneous generation of MS1 alleles with new lengths were observed in this yeast strain. Hence it is concluded that recombination between members of a pair of homologous chromosomes is not a prerequisite for the generation of length changes in MS1 in yeast. 相似文献
9.
Eva Agurell Hakan Cederberg Mona Hedenskog Ulf Rannug 《Molecular & general genetics : MGG》1994,242(2):137-144
To study chemically induced DNA amplifications we used the haploid Saccharomyces cerevisiae strain TR(MS1)-1 carrying an integrated chromosomal copy of the human minisatellite, MS1. Chemicals with different mechanisms of action were tested in this strain: methyl methanesulphonate, ethylene oxide (EO), propylene oxide (PO), camptothecin, 2,3,7,8-tetrachlorodibenso-p-dioxin (TCDD) and reserpine. No increase in frequency of new MS1 length alleles was seen with any of the tested chemicals relative to the spontaneous frequency of approximately 30%. EO and TCDD induced changes in the amplification spectrum, i.e. the frequency distribution of MS1 length alleles longer than the original 1.42 kb allele. PO and camptothecin increased the frequency of plasmid pop-out events. It seems likely that several mechanisms e.g. unequal exchanges, replication slippage and loop formation leading to deletion of a ring of tandem repeats, are involved in the generation of new MS1 length alleles. A loop-forming deletion mechanism is supported by the tendency to multimodality shown in the deamplification (loss of repeat units) spectra, i.e. the frequency distribution of new MS1 length alleles shorter than the original allele. EO and TCDD induced longer MS1 length alleles as compared to the control. The frequent generation of new MS1 length alleles in this haploid yeast strain further demonstrates the instability of such sequences and their possible relevance to genetic toxicology and the mechanisms of induction of cancer as well as other diseases. This study is a first step towards the development of an assay for DNA amplification without the use of a selective agent. 相似文献
10.
T. E. Miller S. M. Reader K. A. Purdie I. P. King 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,89(2-3):255-258
Genomic in-situ hybridization (GISH) was used to determine the amount of wheat-rye chromosome pairing in wheat (Triticum aestivum) x rye (Secale cereale) hybrids having chromosome 5B present, absent, or replaced by an extra dose of chromosome 5D. The levels of overall chromosome pairing were similar to those reported earlier but the levels of wheat-rye pairing were higher than earlier determinations using C-banding. Significant differences in chromosome pairing were found between the three genotypes studied. Both of the chromosome-5B-deficient hybrid genotypes showed much higher pairing than the euploid wheat hybrid. However, the 5B-deficient hybrid carrying an extra chromosome 5D had significantly less wheat-rye pairing than the simple 5B-deficient genotype, indicating the presence of a suppressing factor on chromosome 5D. Non-homologous/non-homoeologous chromosome pairing was observed in all three hybrid genotypes. The value of GISH for assessing the level of wheat-alien chromosome pairing in wheat/alien hybrids and the effectiveness of wheat genotypes that affect homoeologous chromosome pairing is demonstrated. 相似文献
11.
Dihydrolipoamide dehydrogenase (DLD) is a multifunctional protein well characterized as the E3 component of the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes. Previously, conditions predicted to destabilize the DLD dimer revealed that DLD could also function as a diaphorase and serine protease. However, the relevance of these cryptic activities remained undefined. We analyzed human DLD mutations linked to strikingly different clinical phenotypes, including E340K, D444V, R447G, and R460G in the dimer interface domain that are responsible for severe multisystem disorders of infancy and G194C in the NAD(+)-binding domain that is typically associated with milder presentations. In vitro, all of these mutations decreased to various degrees dihydrolipoamide dehydrogenase activity, whereas dimer interface mutations also enhanced proteolytic and/or diaphorase activity. Human DLD proteins carrying each individual mutation complemented fully the respiratory-deficient phenotype of yeast cells lacking endogenous DLD even when residual dihydrolipoamide dehydrogenase activity was as low as 21% of controls. However, under elevated oxidative stress, expression of DLD proteins with dimer interface mutations greatly accelerated the loss of respiratory function, resulting from enhanced oxidative damage to the lipoic acid cofactor of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase and other mitochondrial targets. This effect was not observed with the G194C mutation or a mutation that disrupts the proteolytic active site of DLD. As in yeast, lipoic acid cofactor was damaged in human D444V-homozygous fibroblasts after exposure to oxidative stress. We conclude that the cryptic activities of DLD promote oxidative damage to neighboring molecules and thus contribute to the clinical severity of DLD mutations. 相似文献
12.
Despina Handolias Renato Salemi William Murray Angela Tan Wendy Liu Amaya Viros Alexander Dobrovic John Kelly Grant A. McArthur 《Pigment cell & melanoma research》2010,23(2):210-215
In melanoma, mutations in KIT are most frequent in acral and mucosal subtypes and rarely reported in cutaneous melanomas particularly those associated with intermittent UV exposure. Conversely melanomas arising within chronic sun damaged skin are considered to harbour KIT mutations at higher rates. To characterize the frequency of KIT mutations in a representative melanoma population, 261 patients from two Australian melanoma centres were prospectively screened for mutations in exons 11, 13 and 17 of the KIT gene. A total of 257 patients had cutaneous melanoma arising from non-acral sites and four were acral melanomas. No mucosal or ocular melanomas were analysed. KIT mutations were identified in five tumours (2% of the entire cohort) including two acral melanomas. Two of the three non-acral melanomas with KIT mutations were associated with markers of chronic sun damage as assessed by the degree of skin elastosis. In the remaining cohort, 43% had chronically sun damaged skin. This report confirms that within an Australian population, KIT mutations are infrequent in cutaneous melanomas associated with both intermittent and chronic sun exposed skin. 相似文献
13.
Liu L Amy V Liu G McKeehan WL 《In vitro cellular & developmental biology. Animal》2002,38(10):582-594
14.
The heterotrimeric CCAAT-binding complex is evolutionarily conserved in eukaryotic organisms, including fungi, plants and mammals. In the filamentous fungus Aspergillus nidulans, the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the subunits HapB, HapC and HapE. All three subunits are necessary for DNA binding. HapB contains two putative nuclear localisation signal sequences (NLSs) designated NLS1 and NLS2. Previously, it was shown that only NLS2 was required for nuclear localisation of HapB. Furthermore, HapC and HapE are transported to the nucleus only in complex with HapB via a piggy back mechanism. Here, by using various GFP constructs and by establishing a novel marker gene for transformation of A.nidulans, i.e. the pabaA gene encoding p-aminobenzoic acid synthase, it was shown that the HapB homologous proteins of both Saccharomyces cerevisiae (Hap2p) and human (NF-YA) use an NLS homologous to HapB NLS1 for nuclear localisation in S.cerevisiae. Interestingly, for A.nidulans HapB, NLS1 was sufficient for nuclear localisation in S.cerevisiae. In A.nidulans, HapB NLS1 was also functional when present in a different protein context. However, in A.nidulans, both S.cerevisiae Hap2p and human NF-YA entered the nucleus only when HapB NLS2 was present in the respective proteins. In that case, both proteins Hap2p and NF-YA complemented, at least in part, the hap phenotype of A.nidulans with respect to lack of growth on acetamide. Similarly, A.nidulans HapB and human NF-YA complemented a hap2 mutant of S.cerevisiae. In summary, HapB, Hap2p and NF-YA are interchangeable. Because the A.nidulans hapB mutant was complemented, at least in part, by both the human NF-YA and S.cerevisiae Hap2p this finding suggests that the piggy-back mechanism of nuclear transport found for A.nidulans is conserved in yeast and human. 相似文献