首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single cell irradiation system has been developed at JAERI-Takasaki to study radiobiological processes in single-ion-hit mammalian cells and bystander cells, in ways that cannot be achieved using conventional broad field exposures. Individual mammalian cultured cells are irradiated in the atmosphere on the cell dish, the bottom of which is made of ion-track-detector CR-39, with a single or defined numbers of 13.0 MeV/amu 20Ne and 11.5 MeV/amu 40Ar ions. Targeting and irradiation of the cells are performed automatically at the on-line microscope of the microbeam apparatus according to the positional data of the target cells obtained at the off-line microscope before irradiation. Using this system, Chinese hamster ovary (CHO-K1) cells were irradiated with counted number of 20Ne and 40Ar ions. Thereafter, the growth of the cells was observed individually and repeatedly during post-irradiation incubation. The cells hit by a single 40Ar ion on their nucleus showed strong growth inhibition. Meanwhile, the cells in the irradiated dish but not hit by the ion (bystander cells) showed limited cell growth. This might be a bystander effect caused by heavy ion hit cell co-existing in the same dish.  相似文献   

2.
We have established a single cell irradiation system, which allows selected cells to be individually hit with defined number of heavy charged particles, using a collimated heavy-ion microbeam apparatus at JAERI-Takasaki. This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures. Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18.3 MeV/amu 12C, 13.0 MeV/amu 20Ne, and 11.5 MeV/amu 40Ar ions. Targeting and irradiation of the cells were performed automatically at the on-line microscope of the microbeam apparatus according to the positional data of the target cells obtained at the off-line microscope before irradiation. The actual number of particle tracks that pass through cell nuclei was detected with prompt etching of the bottom of the cell dish made of ion track detector TNF-1 (modified CR-39), with alkaline-ethanol solution at 37 degrees C for 15-30 minutes. Using this system, separately inoculated Chinese hamster ovary cells, confluent normal human fibroblasts, and single plant cells (tobacco protoplasts) have been irradiated. These are the first studies in which single-ion direct hit effect and the bystander effect have been investigated using a high-LET heavy particle microbeam.  相似文献   

3.
Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. This study investigated the role of changes in calcium levels in bystander responses leading to chromosomal damage in nonirradiated T98G glioma cells and AG01522 fibroblasts that had been either exposed to conditioned medium from irradiated cells or co-cultured with a population where a fraction of cells were individually targeted through the nucleus or cytoplasm with a precise number of microbeam helium-3 particles. After the recipient cells were treated with conditioned medium from T98G or AG01522 cells that had been irradiated through either nucleus or cytoplasm, rapid calcium fluxes were monitored in the nonirradiated recipient cells. Their characteristics were dependent on the source of the conditioned medium but had no dependence on radiation dose. When recipient cells were co-cultured with an irradiated population of either T98G or AG01522 cells, micronuclei were induced in the nonirradiated cells, but this response was eliminated by treating the cells with calcicludine (CaC), a potent blocker of Ca(2+) channels. Moreover, both the calcium fluxes and the bystander effect were inhibited when the irradiated T98G cells were treated with aminoguanidine, an inhibitor of nitric oxide synthase (NOS), and when the irradiated AG01522 cells were treated with DMSO, a scavenger of reactive oxygen species (ROS), which indicates that NO and ROS were involved in the bystander responses generated from irradiated T98G and AG01522 cells, respectively. Our findings indicate that calcium signaling may be an early response in radiation-induced bystander effects leading to chromosome damage.  相似文献   

4.
Communication between irradiated and un-irradiated (bystander) cells can cause damage in cells that are not directly targeted by ionizing radiation, a process known as the bystander effect. Bystander effects can also lead to chromosomal/genomic instability within the progeny of bystander cells, similar to the progeny of directly irradiated cells. The factors that mediate this cellular communication can be transferred between cells via gap junctions or released into the extracellular media following irradiation, but their nature has not been fully characterized. In this study we tested the hypothesis that the bystander effect mediator contains an RNA molecule that may be carried by exosomes. MCF7 cells were irradiated with 2 Gy of X rays and the extracellular media was harvested. RNase treatment abrogated the ability of the media to induce early and late chromosomal damage in bystander cells. Furthermore, treatment of bystander cells with exosomes isolated from this media increased the levels of genomic damage. These results suggest that the bystander effect, and genomic instability, are at least in part mediated by exosomes and implicate a role for RNA.  相似文献   

5.
The Gray Cancer Institute ultrasoft X-ray microprobe was used to quantify the bystander response of individual V79 cells exposed to a focused carbon K-shell (278 eV) X-ray beam. The ultrasoft X-ray microprobe is designed to precisely assess the biological response of individual cells irradiated in vitro with a very fine beam of low-energy photons. Characteristic CK X rays are generated by a focused beam of 10 keV electrons striking a graphite target. Circular diffraction gratings (i.e. zone plates) are then employed to focus the X-ray beam into a spot with a radius of 0.25 microm at the sample position. Using this microbeam technology, the correlation between the irradiated cells and their nonirradiated neighbors can be examined critically. The survival response of V79 cells irradiated with a CK X-ray beam was measured in the 0-2-Gy dose range. The response when all cells were irradiated was compared to that obtained when only a single cell was exposed. The cell survival data exhibit a linear-quadratic response when all cells were targeted (with evidence for hypersensitivity at low doses). When only a single cell was targeted within the population, 10% cell killing was measured. In contrast to the binary bystander behavior reported by many other investigations, the effect detected was initially dependent on dose (<200 mGy) and then reached a plateau (>200 mGy). In the low-dose region (<200 mGy), the response after irradiation of a single cell was not significantly different from that when all cells were exposed to radiation. Damaged cells were distributed uniformly over the area of the dish scanned (approximately 25 mm2). However, critical analysis of the distance of the damaged, unirradiated cells from other damaged cells revealed the presence of clusters of damaged cells produced under bystander conditions.  相似文献   

6.
Exposure to ionizing radiation may induce a heritable genomic instability phenotype that results in a persisting and enhanced genetic and functional change among the progeny of irradiated cells. Since radiation-induced bystander effects have been demonstrated with a variety of biological end points under both in vitro and in vivo conditions, this raises the question whether cytoplasmic irradiation or the radiation-induced bystander effect can also lead to delayed genomic instability. In the present study, we used the Radiological Research Accelerator Facility charged-particle microbeam for precise nuclear or cytoplasmic irradiation. The progeny of irradiated and the bystander human hamster hybrid (A(L)) cells were analyzed using multicolor banding (mBAND) to examine persistent chromosomal changes. Our results showed that the numbers of metaphase cells involving changes of human chromosome 11 (including rearrangement, deletion and duplication) were significantly higher than that of the control in the progeny of both nuclear and cytoplasmic targeted cells. These chromosomal changes could also be detected among the progeny of bystander cells. mBAND analyses of clonal isolates from nuclear and cytoplasm irradiations as well as the bystander cell group showed that chromosomal unstable clones were generated. Analyses of clonal stability after long-term culture indicated no significant change in the number of unstable clones for the duration of culture in each irradiated group. These results suggest that genomic instability that is manifested after ionizing radiation exposure is not dependent on direct damage to the cell nucleus.  相似文献   

7.
Radiation-induced damage to living cells results from either a direct hit to cellular DNA, or from indirect action which leads to DNA damage from radiation produced radicals. However, in recent years there is evidence that biological effects such as cell killing, mutation induction, chromosomal damage and modification of gene expression can occur in a cell population exposed to low doses of alpha particles. In fact these doses are so low that not all cells in the population will be hit directly by the radiation. Using a precision alpha-particle microbeam, it has been recently demonstrated that irradiated target cells can induce a bystander mutagenic response in neighboring "bystander" cells which were not directly hit by alpha particles. Furthermore, these results suggest that gap-junction mediated cell-to-cell communication plays a critical role in this bystander phenomenon. The purpose of this section is to describe recent studies on bystander biological effects. The recent work described here utilized heavy charged particles for irradiation, and investigated the role of gap-junction mediated cell-cell communication in this phenomenon.  相似文献   

8.
X-rays induce various DNA damages including strand breaks that lead to formation of micronuclei and chromosomal aberrations as well as increased number of apoptotic cells. Similar effects appear when non-irradiated cells are treated with medium collected from cultures of irradiated cells (irradiation conditioned medium - ICM). This phenomenon was termed "bystander effect". A number of studies suggest that bystander effect appears to be associated with up-regulation of oxidative metabolism. We thus compared the effects of antioxidant Vitamins C and E on the frequency of micronuclei and apoptotic cells in both directly irradiated cell cultures and in cultures exposed to ICM. Addition of Vitamins C or E (1-40 microg/ml) to culture medium after exposure to radiation or ICM reduced the frequency of micronuclei in a concentration-dependent manner. These vitamins had no effect on cell viability, clonogenic survival or the frequency of apoptotic cells under both conditions tested. These results show that the bystander effect causes micronucleation in addition to other known effects and suggest that the factors causing micronucleation by X-irradiation, oxidative DNA damage and incomplete repair, are regulated by apoptosis-independent pathways.  相似文献   

9.
There is increasing evidence that two of the biological effects associated with low-dose ionizing radiation, genomic instability and bystander responses, may be linked. To verify and validate the link between the two phenomena, the ability of Si490 ions (high-energy particles associated with radiation risk in space) to induce bystander responses and chromosomal instability in human bronchial epithelial (HBEC-3kt) cells was investigated. These studies were conducted at both the population and single cell level in irradiated and nonirradiated bystander cells receiving medium from the irradiated cultures. At the general population level, transfer of medium from silicon-ion (Si490)-irradiated cultures (at doses of 0.073?Gy, 1.2?Gy and 2?Gy) to nonirradiated bystander cells resulted in small increases in the levels of chromosomal aberrations at the first division. Subsequently, single cell clones isolated from irradiated and bystander populations were analyzed for the appearance of de novo chromosome-type aberrations after ~50 population doublings using mFISH. Both irradiated and bystander clones demonstrated chromosomal instability (as seen by the de novo appearance of translocations and chromosomal fragments), albeit to different degrees, whereas sham-treated controls showed relatively stable chromosomal patterns. The results presented here highlight the importance of nontargeted effects of radiation on chromosomal instability in human epithelial cells and their potential relevance to human health.  相似文献   

10.
Megabase chromatin domains involved in DNA double-strand breaks in vivo.   总被引:29,自引:0,他引:29  
The loss of chromosomal integrity from DNA double-strand breaks introduced into mammalian cells by ionizing radiation results in the specific phosphorylation of histone H2AX on serine residue 139, yielding a specific modified form named gamma-H2AX. An antibody prepared to the unique region of human gamma-H2AX shows that H2AX homologues are phosphorylated not only in irradiated mammalian cells but also in irradiated cells from other species, including Xenopus laevis, Drosophila melanogaster, and Saccharomyces cerevisiae. The antibody reveals that gamma-H2AX appears as discrete nuclear foci within 1 min after exposure of cells to ionizing radiation. The numbers of these foci are comparable to the numbers of induced DNA double-strand breaks. When DNA double-strand breaks are introduced into specific partial nuclear volumes of cells by means of a pulsed microbeam laser, gamma-H2AX foci form at these sites. In mitotic cells from cultures exposed to nonlethal amounts of ionizing radiation, gamma-H2AX foci form band-like structures on chromosome arms and on the end of broken arms. These results offer direct visual confirmation that gamma-H2AX forms en masse at chromosomal sites of DNA double-strand breaks. The results further suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.  相似文献   

11.
This study investigated the role of DNA double strand breaks and DNA base damage in radiation-induced bystander responses in Chinese hamster ovary (CHO) cell lines. Two CHO repair-deficient clones, xrs5 (DNA double strand break repair-deficient) and EM9 (DNA base excision repair-deficient) were used in addition to the wild type (CHO). The Gray Cancer Institute ultrasoft X-ray microprobe is a powerful tool for investigating the bystander response, because it permits the irradiation of only a single nucleus of a cell, as reported previously. In order to investigate the bystander effect in each repair-deficient cell line, we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population was targeted with 1 Gy, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells in the EM9 and xrs5 cell lines, whereas induction was not observed in CHO. The induction of micronuclei in xrs5 was significantly higher than that in EM9. Under these conditions, the surviving fraction in the neighbouring cells was significantly lower in xrs5 than in the other cell lines, showing a higher cell killing effect in xrs5. To confirm that bystander factors secreted from irradiated cells caused these effects, we carried out medium transfer experiments using conventional X-irradiation. Medium conditioned for 24 h with irradiated cells was transferred to unirradiated cells and elevated induction of micronuclei was observed in xrs5. These results suggest that DNA double strand breaks rather than base damage are caused by factors secreted in the medium from irradiated cells.  相似文献   

12.
It has long been accepted that radiation-induced genetic effects require that DNA be hit and damaged directly by the radiation. Recently, evidence has accumulated that in cell populations exposed to low doses of alpha particles, biological effects occur in a larger proportion of cells than are estimated to have been traversed by alpha particles. The end points observed include chromosome aberrations, mutations and gene expression. The development of a fast single-cell microbeam now makes it possible to expose a precisely known proportion of cells in a population to exactly defined numbers of alpha particles, and to assay for oncogenic transformation. The single-cell microbeam delivered no, one, two, four or eight alpha particles through the nuclei of all or just 10% of C3H 10T1/2 cells. We show that (a) more cells can be inactivated than were actually traversed by alpha particles and (b) when 10% of the cells on a dish are exposed to alpha particles, the resulting frequency of induced transformation is not less than that observed when every cell on the dish is exposed to the same number of alpha particles. These observations constitute evidence suggesting a bystander effect, i.e., that unirradiated cells are responding to damage induced in irradiated cells. This bystander effect in a biological system of relevance to carcinogenesis could have significant implications for risk estimation for low-dose radiation.  相似文献   

13.
Ionizing radiation-induced bystander effects have been documented for a multitude of endpoints such as mutations, chromosome aberrations and cell death, which arise in nonirradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. To address this, we employed precise microbeams of carbon and neon ions for targeting only a very small fraction of cells in confluent fibroblast cultures. Conventional broadfield irradiation was conducted in parallel to see the effects in irradiated cells. Exposure of 0.00026% of cells led to nearly 10% reductions in the clonogenic survival and twofold rises in the apoptotic incidence regardless of ion species. Whilst apoptotic frequency increased with time up to 72 h postirradiation in irradiated cells, its frequency escalated up to 24h postirradiation but declined at 48 h postirradiation in bystander cells, indicating that bystander cells exhibit transient commitment to apoptosis. Carbon- and neon-ion microbeam irradiation similarly caused almost twofold increments in the levels of serine 15-phosphorylated p53 proteins, irrespective of whether 0.00026, 0.0013 or 0.0066% of cells were targeted. Whereas the levels of phosphorylated p53 were elevated and remained unchanged at 2h and 6h postirradiation in irradiated cells, its levels rose at 6h postirradiation but not at 2h postirradiation in bystander cells, suggesting that bystander cells manifest delayed p53 phosphorylation. Collectively, our results indicate that heavy ions inactivate clonogenic potential of bystander cells, and that the time course of the response to heavy ions differs between irradiated and bystander cells. These induced bystander responses could be a defensive mechanism that minimizes further expansion of aberrant cells.  相似文献   

14.
As the first step for the analysis of the biological effect of heavy charged-particle radiation, we established a method for the irradiation of individual cells with a heavy-ion microbeam apparatus at JAERI-Takasaki. CHO-K1 cells attached on a thin film of an ion track detector, CR-39, were automatically detected under a fluorescence microscope and irradiated individually with an 40Ar13+ ion (11.5 MeV/nucleon, LET 1260 keV/microm) microbeam. Without killing the irradiated cells, trajectories of irradiated ions were visualized as etch pits by treatment of the CR-39 with an alkaline-ethanol solution at 37 degrees C. The exact positions of ion hits were determined by overlaying images of both cells and etch pits. The cells that were irradiated with argon ions showed a reduced growth in postirradiation observations. Moreover, a single hit of an argon ion to the cell nucleus resulted in strong growth inhibition. These results tell us that our verified irradiation method enables us to start a precise study of the effects of high-LET radiation on cells.  相似文献   

15.
The radiation-induced bystander effect for clonogenic survival   总被引:2,自引:0,他引:2  
It has long been accepted that the radiation-induced heritable effects in mammalian cells are the result of direct DNA damage. Recent evidence, however, suggests that when a cell population is exposed to a low dose of alpha particles, biological effects occur in a larger proportion of cells than are estimated to have been traversed by alpha particles. Experiments involving the Columbia University microbeam, which allows a known fraction of cells to be traversed by a defined number of alpha particles, have demonstrated a bystander effect for clonogenic survival and oncogenic transformation in C3H 10T(1/2) cells. When 1 to 16 alpha particles were passed through the nuclei of 10% of a C3H 10T(1/2) cell population, more cells were unable to form colonies than were actually traversed by alpha particles. Both hit and non-hit cells contributed to the outcome of the experiments. The present work was undertaken to assess the bystander effect of radiation in only non-hit cells. For this purpose, Chinese hamster V79 cells transfected with hygromycin- or neomycin-resistance genes were used. V79 cells stably transfected with a hygromycin resistance gene and stained with a nuclear dye were irradiated with the charged-particle microbeam in the presence of neomycin-resistant cells. The biological effect was studied in the neomycin-resistant V79 cells after selective removal of the hit cells with geneticin treatment.  相似文献   

16.
The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.  相似文献   

17.
The bystander effect for sister chromatid exchanges (SCEs) and chromosomal aberrations was examined in hamster cell lines deficient in either DNA-PKcs (V3 cells, deficient in nonhomologous end joining, NHEJ) or RAD51C (irs3 cells, deficient in homologous recombination, HR). Cells synchronized in G0/G1 phase were irradiated with very low fluences of alpha particles such that < 1% of the nuclei were traversed by an alpha particle. Wild-type cells showed a prominent bystander response for SCE induction; an even greater effect was observed in V3 cells. On the other hand, no significant induction of SCE was observed in the irs3 RAD51C-deficient bystander cells irradiated at various stages in the cell cycle. Whereas a marked bystander effect for chromosomal aberrations occurred in V3 cells, the induction of chromosomal aberrations in irs3 bystander cells was minimal and similar to that of wild-type cells. Based on these findings, we hypothesize that HR is essential for the induction of SCE in bystander cells; however, HR is unable to repair the DNA damage induced in NHEJ-deficient bystander cells that leads to either SCE or chromosomal aberrations.  相似文献   

18.
During the process of the realization of the bystander effect the trans of the Signal from irradiated cells to the intact cell (bystander cells) happens. So both type of cells (irradiated and intact cells) have the same damages and reactions. There are new data about bystander effect as the transduction mechanism of the adaptive response and we have investigated this phenomenon. There are an incubation of the intact (bystander cells) and the exposed (X-radiation of 10 cGy) human lymphocytes and we analyze the location of the centromeric loci of the first chromosome. We observed hat for the first time that after X-ray exposition of the adaptive doses the transposition of the chromosome loci from the peripheral to the central parts of the nucleus in intact (bystander cell) G0-lymphocytes which were incubated in the growth environment cells with irradiated cells removal. We support that the starting states of the adaptive response is the loci extrication of the matrix, the transposition and the approach homologous chromosomes. This process is necessary for the DNA double strand breaks reparation (in the case of injured dose X-radiation) with the participation of the homologous recombination.  相似文献   

19.
Evidence has accumulated that irradiated cells affect their unirradiated neighbors, so that they in turn display cellular responses typically associated with direct radiation exposure. These responses are generally known as bystander effects. In this study, cell cycle-related bystander responses were investigated in three strains of human fibroblasts after exposure to densely ionizing radiation. Varying the linear energy transfer (LET) from 11 to 15,000 keV microm(-1) allowed a study of the impact of the complexity of DNA damage in the inducing cells on the responses of bystander cells. Using both broad-beam and microbeam irradiation, transient bystander responses were obtained for the induction of CDKN1A (p21). The latter was also observed when the transmission of bystander signals was limited to soluble factors. Targeted irradiation of single cells in confluent cell monolayers revealed no correlation between the amount of CDKN1A protein in the bystander cells and the radial distance to the targeted cells. In line with the induction of CDKN1A in bystander cells after irradiation with different LETs, a transient delay in the first G1 phase after irradiation of G0/G1 cells was observed. However, the CDKN1A induction revealed no significant effect on premature terminal differentiation considered to underlie fibrosis in irradiated tissue. Thus the unchanged differentiation pattern in bystander cells does not indicate pronounced, long-lasting effects.  相似文献   

20.
Although radiation-induced heritable damage in mammalian cells was thought to result from the direct interaction of radiation with DNA, it is now accepted that biological effects may occur in cells that were not themselves traversed by ionizing radiation but are close to those that were. However, little is known about the mechanism underlying such a bystander effect, although cell-to-cell communication is thought to be of importance. Previous work using the Columbia microbeam demonstrated a significant bystander effect for clonogenic survival and oncogenic transformation in C3H 10T(1/2) cells. The present study was undertaken to assess the importance of the degree of cell-to-cell contact at the time of irradiation on the magnitude of this bystander effect by varying the cell density. When 10% of cells were exposed to a range of 2-12 alpha particles, a significantly greater number of cells (P < 0.0001) were inactivated when cells were irradiated at high density (>90% in contact with neighbors) than at low density (<10% in contact). In addition, the oncogenic transformation frequency was significantly higher in high-density cultures (P < 0.0004). These results suggest that when a cell is hit by radiation, the transmission of the bystander signal through cell-to-cell contact is an important mediator of the effect, implicating the involvement of intracellular communication through gap junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号