首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have examined various derivatives of Escherichia coli K-12 for liquid holding recovery, a type of recovery originally observed in E. coli B irradiated with ultraviolet light. Although most of the K-12 derivatives tested showed relatively little or no recovery under our conditions, four of the six independent rec(-) mutants examined, those carrying recA1, rec-12, recA13, and rec-56, respectively, displayed marked recovery. These mutants are distinguished from rec(+) strains by their increased sensitivity to ultraviolet radiation and decreased ability to undergo genetic recombination. Two of them have also been reported to release large amounts of their deoxyribonucleic acid as acid-soluble material, especially after irradiation. None of the three uvr(-) mutants examined, containing uvrA6, uvrB5, or uvrC34, showed comparable liquid holding recovery. The one rec(-) uvr(-) derivative tested, carrying recA13 and uvrA6, did not appear to undergo liquid holding recovery, although recA13 uvr(+) strains did. Genetic analysis of one strain, a recA13 mutant, indicated that all the rec(+) derivatives obtained from it by conjugation, transduction and reversion, had lost the property of showing liquid holding recovery. From these results, we conclude that in E. coli K-12 the expression of liquid holding recovery depends upon certain rec(-) mutations.  相似文献   

2.
The mutational interaction between radiation at 365 and 254 nm was studied in various strains of E. coli by a mutant assay based on reversion to amino-acid independence in full nutrient conditions. In the two repair-proficient strains (K12 AB 1157 and B/r), pre-treatment with radiation at 365 nm strongly suppressed the induction of mutations by far-UV, a phenomenon accompanied by a strong lethal interaction. The frequency of mutations induced by far-UV progressively declined with increasing dose of near-UV. Far-UV-induced mutagenesis to T5 resistance was almost unaltered by pre-treatment with near-UV. In AB 1886 uvrA there was no lethal interaction between the two wavelengths but the mutagenic interaction was synergistic. This synergism was maximal at a 365-nm dose of 8 X 10(5) J m-2. It is proposed that in the wild-type strain, cells containing potentially mutagenic lesions are selectively eliminated from the population because of abortive excision of an error-prone repair-inducing signal. In excisionless strains, 365-nm radiation may be less damaging to the error-prone than to the error-free post-replication repair system. Alternatively, mutation may be enhanced because of the occurrence of error-prone repair of 365-nm lesions by a system that is not induced in the absence of 254-nm radiation.  相似文献   

3.
After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), and X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E. coli K-12 linkage map. The radB101 mutation sensitized wildtype cells to gamma and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their gamma-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively gamma-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for gamma- and uv-radiation mutagenesis, it showed only a slight enhancement of gamma- and uv-radiation-induced DNA degradation, and it was approximately 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after gamma irradiation and in postreplication repair after uv irradiation for the following reasons; the radB strain was normal for the host-cell reactivation of gamma- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to gamma and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.  相似文献   

4.
Salmonella typhimurium strains with supX mutations are more sensitive than wild type to killing by ultraviolet (UV) irradiation. Studies with strains bearing the leuD21 mutation revealed that inactivation of the supX locus by a nonsense mutation or a deletion results in a complete lack of ability to produce induced Leu+ reversion mutations after UV irradiation. Suppression of the nonsense supX mutation or the presence of an Escherichia coli K-12 F'-borne supX+ allele restored the capacity for induced reversions and increased cell survival after UV irradiation. Introduction of plasmid pKM101 into supX mutant strains also restored their capacity for UV mutagenesis as well as increased survival. The possible nature of the supX gene product and mechanisms by which it may affect expression of the inducible SOS error-prone repair system are considered.  相似文献   

5.
Strains of Escherichia coli K-12 mutant in the genes controlling excision repair (uvr) and genetic recombination (rec) have been studied with reference to their radiosensitivity and their ability to repair X-ray-induced single-strand breaks in deoxyribonucleic acid (DNA). Mutations in the rec genes appreciably increase the radiosensitivity of E. coli K-12, whereas uvr mutations produce little if any increase in radiosensitivity. For a given dose of X-rays, the yield of single-strand breaks has been shown by alkaline sucrose gradient studies to be largely independent of the presence of rec or uvr mutations. The rec(+) cells (including those carrying the uvrB5 mutation) could efficiently rejoin X-ray-induced single-strand breaks in DNA, whereas recA56 mutants could not repair these breaks to any great extent. The recB21 and recC22 mutants showed some indication of repair capacity. From these studies, it is concluded that a correlation exists between the inability to repair single-strand breaks and the radiosensitivity of the rec mutants of E. coli K-12. This suggests that unrepaired single-strand breaks may be lethal lesions in E. coli.  相似文献   

6.
Escherichia coli cells were killed by visible light irradiation in the presence of the photosensitizing dye, toluidine blue. Two uvrB mutant strains of E. coli K-12 (AB1885 and N3-1) were much more sensitive than the isogenic uvrA and uvrC strains to treatment with toluidine blue plus light, suggesting that the uvrB+ gene product was involved in repair of DNA damage induced by the treatment. The uvrB+ gene cloned in a high- or low-copy-number plasmid was transformed into the uvrB strain (AB1885). Although all the transformants showed the same resistance as its wild-type strain (AB1157) to UV irradiation, they were as sensitive as AB1885 was to treatment with toluidine blue plus light. The two uvrB strains were more sensitive to sodium dodecyl sulfate than the other strains, suggesting that these strains had a defect in the cell surface. A sodium dodecyl sulfate-resistant revertant obtained from AB1885 was more resistant than AB1885 was to treatment with toluidine blue plus light. The two uvrB strains (AB1885 and N3-1) appear to have a defective gene (tentatively called dvl) different from uvrB. Its map position was around 7 min on the E. coli map.  相似文献   

7.
The role of the umuC gene product in postreplication repair was studied in UV-irradiated Escherichia coli K-12 uvrB cells. A mutation at umuC increased the UV radiation sensitivities of uvrB, uvrB recF, uvrB recB, and uvrB recF recB cells; it also increased the deficiencies in the repair of DNA daughter-strand gaps in these strains, but it did not affect the repair of DNA double-strand breaks that arose from unrepaired DNA daughter-strand gaps. We suggest that the umuC gene product is involved in a minor system for the repair of DNA daughter-strand gaps, possibly the repair of overlapping DNA daughter-strand gaps.  相似文献   

8.
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.  相似文献   

9.
Three mutations, denoted lex-1, -2 and -3, which increase the sensitivity of Escherichia coli K-12 to ultraviolet light (UV) and ionizing radiation, have been found by three-factor transduction crosses to be closely linked to uvrA on the E. coli K-12 linkage map. Strains bearing these mutations do not appear to be defective in genetic recombination although in some conjugational crosses they may fail to produce a normal yield of genetic recombinants depending upon the time of mating and the marker selected. The mutagenic activity of UV is decreased in the mutant strains. After irradiation with UV, cultures of the strains degrade their deoxyribonucleic acid at a high rate, similar to recA(-) mutant strains. Stable lex(+)/lec(-) heterozygotes are found to have the mutant radiation-sensitive phenotype of haploid lex(-) strains.  相似文献   

10.
Giant Cells of Escherichia coli   总被引:18,自引:17,他引:1  
A mutant strain of Escherichia coli K-12 produced amorphous cells when grown in a variety of media. The lon(-) allele, known to increase the radiation sensitivity of the cytokinesis mechanism, was introduced into the mutant by means of conjugation. Cells of this recombinant strain grew, after exposure to radiation, into giant amorphous cells, approximately 500 to 1,000 times the volume of a normal E. coli cell. These giant cells are analogous to the filaments formed after the irradiation of lon(-) rod-shaped cells.  相似文献   

11.
After ultraviolet (UV) irradiation, an Escherichia coli K12 uvrB5 recB21 recF143 strain (SR1203) was able to perform a limited amount of postreplication repair when incubated in minimal growth medium (MM), but not if incubated in a rich growth medium. Similarly, this strain showed a higher survival after UV irradiation if plated on MM versus rich growth medium (i.e., it showed minimal medium recovery (MMR]. In fact, its survival after UV irradiation on rich growth medium was similar to that of a uvrB5 recA56 strain, which does not show MMR or postreplication repair. The results obtained with a uvrB5 recF332::Tn3 delta recBC strain and a uvrB5 recF332::Tn3 recB21 recC22 strain were similar to those obtained for strain SR1203, suggesting that the recB21 and recF143 alleles are not leaky in strain SR1203. The treatment of UV-irradiated uvrB5 recB21 recF143 and uvrB5 recF332::Tn3 delta recBC cells with rifampicin for 2 h had no effect on survival or the repair of DNA daughter-strand gaps. Therefore, a pathway of postreplication repair has been demonstrated that is constitutive in nature, is inhibited by postirradiation incubation in rich growth medium, and does not require the recB, recC and recF gene products, which control the major pathways of postreplication repair.  相似文献   

12.
The recA genes of Proteus vulgaris, Erwinia carotovora, Shigella flexneri and Escherichia coli B/r have been isolated and introduced into Escherichia coli K-12. All the heterologous genes restore resistance to killing by UV irradiation and the mutagen 4-nitroquinoline-1-oxide in RecA- E. coli K-12 hosts. Recombination proficiency is also restored as measured by formation of Lac+ recombinants from duplicated mutant lacZ genes and the ability to propagate phage lambda derivatives requiring host recombination functions for growth (Fec-). The cloned heterologous genes increase the spontaneous induction of lambda prophage in lysogens of a recA strain. Addition of mitomycin C stimulates phage production in cells carrying the E. coli B/r and S. flexneri recA genes, but little or no stimulation is seen in cells carrying the E. carotovora and P. vulgaris recA genes. After treatment with nalidixic acid, the heterologous RecA proteins are synthesized at elevated levels, a result consistent with their regulation by the E. coli K-12 LexA repressor. Southern hybridization and preliminary restriction analysis indicate divergence among the coding sequences, but antibodies prepared against the E. coli K-12 RecA protein cross-react with the heterologous enzymes, indicating structural conservation among these proteins.  相似文献   

13.
Specialized peptide transport system in Escherichia coli.   总被引:10,自引:9,他引:1       下载免费PDF全文
Trileucine is utilized as a source of leucine for growth of strains of Escherichia coli K-12 that are deficient in the oligopeptide transport system (Opp). Trithreonine is toxic to E. coli K-12. Opp- mutants of E. coli K-12 retain complete sensitivity to this tripeptide. Moreover, E. coli W, which is resistant to trithreonine, can utlize this tripeptide as a threonine source and this capability is fully maintained in E. coli W (Opp-). A spontaneous trithreonine-resistant mutant of E. coli K-12 (Opp-) has been isolated that has an impaired growth response to trileucine and is resistant to trithreonine. Trileucine competes with the uptake of trithreonine as measured by its ability to relieve trithreonine toxicity in E. coli K-12. It is concluded that trileucine as well as trithreonine are transported into E. coli K-12 or W by a common uptake system that is distinct from the Opp system. Trimethionine can act as a competitor of trileucine or trithreonine-supported growth and as an antagonist of trithreonine toxicity in Opp- mutants. It is concluded that trimethionine is recognized by the trileucine-trithreonine transport system. Trithreonine, trimethionine, and trileucine are also transported by the Opp system, as they all relieve triornithine toxicity towards E. coli W and compete with tetralysine utilization as lysine source for growth of a lysine auxotroph of this strain.  相似文献   

14.
F Masek  M Skorvaga  M Sedliaková 《Gene》1989,78(1):195-199
Dimer excision was followed in Escherichia coli K-12 AB1157 DM49 lexA3 mutant (whose repressor is not cleavable with RecA protease), and in E. coli K-12 AB2497[pGC3] carrying the cloned lexA gene. In either case din genes could not be efficiently derepressed. In such cells ultraviolet (UV) irradiation caused an extensive DNA degradation, which was not observed in cells with derepressed din genes. Even after a high UV dose (70 J/m2) dimers were being excised efficiently. However, progressive DNA degradation interfered with the precise detection of unexcised dimers. We conclude that induction of din genes is required for filling some of the gaps and for prevention of DNA degradation, but not for excision itself.  相似文献   

15.
The ultraviolet (UV) and gamma radiation-induced reversion of the trpA21, trpA9813, and trpE9777 sequenced-frameshift mutations were studied in Escherichia coli K-12 with or without the plasmid pKM101. Radiation induced the reversion of all 3 frameshifts, and pKM101 enhanced this reversion 10-50-fold. Factors influencing the differential radiation revertability of frameshifts are discussed. The two most revertable frameshifts, trpE9777 and trpA9813, were used as probes to understand the role of the umuDC genes in radiation-induced frameshift reversion. Unlike the UV radiation-induced reversion of base-substitution mutations, the reversion of these frameshifts was not enhanced in a uvrA umuC strain by photoreactivation after a post-UV-irradiation incubation. The UmuDC proteins are suggested to have functions in the radiation induction of frameshifts that are more complex than are their functions in the induction of base substitutions.  相似文献   

16.
Regulation of the Escherichia coli K-12 uvrB operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The UV light inducibility of the uvrB operon of Escherichia coli K-12 was previously demonstrated by exploiting a strain in which the gene for the enzyme beta-galactosidase was inserted into the uvrB operon. This insert is now shown to be located within the structural gene for the uvrB enzyme, leaving the regulatory sequences of the operon intact. Analyses to quantitate the induction of this system show that derepression of the operon is first detectable 5 min after UV exposure, with the rate of synthesis increasing to four to six times the uninduced rate during the subsequent 30 min. Induction is unaffected by mutations in other components of nucleotide excision repair. The control of uvrB was found to result from direct repression by the lexA gene product, with the recA gene product playing an indirect role. Nucleotide excision repair thus seems to be part of the SOS response.  相似文献   

17.
18.
19.
Salmonella typhosa hybrids able to adsorb lambda were obtained by mating S. typhosa recipients with Escherichia coli K-12 donors. After adsorption of wild-type lambda to these S. typhosa hybrids, no plaques or infective centers could be detected. E. coli K-12 gal(+) genes carried by the defective phage lambdadg were transduced to S. typhosa hybrids with HFT lysates derived from E. coli heterogenotes. The lysogenic state which resulted in the S. typhosa hybrids after gal(+) transduction differed from that of E. coli. Ability to produce lambda, initially present, was permanently segregated by transductants of the S. typhosa hybrid. S. typhosa lysogens did not lyse upon treatment for phage induction with mitomycin C, ultraviolet light, or heat in the case of thermoinducible lambda. A further difference in the behavior of lambda in Salmonella hybrids was the absence of zygotic induction of the prophage when transferred from E. coli K-12 donors to S. typhosa. A new lambda mutant class, capable of forming plaques on S. typhosa hybrids refractory to wild-type lambda, was isolated at low frequency by plating lambda on S. typhosa hybrid WR4254. Such mutants have been designated as lambdasx, and a mutant allele of lambdasx was located between the P and Q genes of the lambda chromosome. Plaques were formed also on the S. typhosa hybrid host with a series of lambda(i21) hybrid phages which contain the N gene of phage 21. The significance of these results in terms of Salmonella species as hosts for lambda is discussed.  相似文献   

20.
Insertion of transpozone TnI determining ampicillin resistance into the E. coli K-12 chromosome resulted in formation of auxothrophic mutants of 2 types. The mutants of the first type carried thermosensitive mutation resulting in auxotrophy with respect to isoleucine at a temperature of 43 degrees C. Such mutants occurred with high frequency (up to 14 per cent with respect to the number of the survived cells with the chromosomes carrying inserted TnI) and had capacity for reversion to the phenotype of the wild type. The mutants of the second type occurred with a frequency 20--180 times lower than that of the mutants of the first type and did not reverse to the phenotype of the parent bacteria. It was found that the chromosome of E. coli K-12 possessed at least 7 sites available for transpozone TnI insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号