首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We conduct species delimitation of the widespread parachuting frog species Rhacophorus catamitus using samples from across the island of Sumatra, Indonesia. We use mitochondrial, genomic and morphological data, and find that R. catamitus is composed of three lineages corresponding to northern, central and southern lineages. Mitochondrial and genomic data show admixture or incomplete lineage sorting between the central and southern lineages, but deep divergence from the northern lineage. Coalescent species delimitation supports a three species model for this complex, and we recommend that the northern lineage be described as a new species. Our study highlights the power of coalescent species delimitation in an integrative framework for identifying unrecognised diversity in understudied tropical species complexes. We also emphasise the evolutionary importance of northern Sumatra, a region that harboured montane refugia during Pliocene–Pleistocene climate change, but has also been heavily affected by volcanic activity.  相似文献   

3.
Studies of speciation and taxon delimitation are usually decoupled. Combining these methods provides a stronger theoretical ground for recognizing new taxa and understanding processes of speciation. Using coalescent methods, we examine speciation, post-speciation population demographics, and taxon delimitation in the Arizona Mountain Kingsnake (Lampropeltis pyromelana), a species restricted to high elevations in southwestern United States and northern Mexico (SW). These methods provide a solid foundation for understanding how biogeographic barriers operate at the regional scale in the SW. Bayesian species delimitation methods, using three loci from samples of L. pyromelana taken throughout their range, show strong support for the existence of two species that are separated by low elevation habitats found between the Colorado Plateau/ Mogollon Rim and the Sierra Madre Occidental. Our results suggest an allopatric mode of speciation given the near absence of gene flow over time, which resulted in two lineages of unequal population sizes. Speciation likely occurred prior to the Pleistocene, during the aridification of the SW and/or the uplift of the Colorado Plateau, and while these species occupy similar high-elevation niches, they are isolated by xeric conditions found in the intervening low deserts. Furthermore, post-speciation demographics suggest that populations of both lineages were not negatively impacted by climate change throughout the Pleistocene. Finally, our results suggest that at least for this group, where divergence is old and gene flow is low, Bayesian species delimitation performs well.  相似文献   

4.
Delimiting young species is one of the great challenges of systematic biology, particularly when the species in question exhibit little morphological divergence. Anolis distichus, a trunk anole with more than a dozen subspecies that are defined primarily by dewlap color, may actually represent several independent evolutionary lineages. To test this, we utilized amplified fragment length polymorphisms (AFLP) genome scans and genetic clustering analyses in conjunction with a coalescent‐based species delimitation method. We examined a geographically widespread set of samples and two heavily sampled hybrid zones. We find that genetic divergence is associated with a major biogeographic barrier, the Hispaniolan paleo‐island boundary, but not with dewlap color. Additionally, we find support for hypotheses regarding colonization of two Hispaniolan satellite islands and the Bahamas from mainland Hispaniola. Our results show that A. distichus is composed of seven distinct evolutionary lineages still experiencing a limited degree of gene flow. We suggest that A. distichus merits taxonomic revision, but that dewlap color cannot be relied upon as the primary diagnostic character.  相似文献   

5.
Accurate species delimitation is critical for biodiversity studies. However, species complexes characterized by introgression, high levels of population structure and subtle phenotypic differentiation can be challenging to delimit. Here, we report on a molecular systematic investigation of the woodland salamanders Plethodon wehrlei and Plethodon punctatus, which traditionally have been placed in the Plethodon wehrlei species group. To quantify patterns of genetic variation, we collected genetic samples from throughout the range of both species, including 22 individuals from nine populations of P. punctatus, and 60 individuals from 26 populations of P. wehrlei. From these samples, we sequenced three mtDNA loci (5596 base pairs) and five nuclear loci (3377 base pairs). We inferred time‐calibrated gene trees and species trees using BEAST 2.4.6, and we delimited putative species using a Bayesian implementation of the general mixed Yule‐coalescent model (bGMYC) and STRUCTURE. Finally, we validated putative species using the multispecies coalescent as implemented in Bayesian Phylogenetics and Phylogeography (BPP). We found substantial phylogeographic diversity in P. wehrlei, including multiple geographically cohesive clades and an inferred mitochondrial common ancestor at 11.5 myr (95% HPD: 9.6–13.6 myr) that separated populations formerly assigned to P. dixi from all other populations. We also found that P. punctatus is deeply nested within P. wehrlei, rendering the latter paraphyletic. After discussing the challenges faced by modern species delimitation methods, we recommend retaining P. punctatus because it is ecologically and phenotypically distinct. We further recommend that P. dixi be recognized as a valid species.  相似文献   

6.
The “multispecies” coalescent (MSC) model that underlies many genomic species-delimitation approaches is problematic because it does not distinguish between genetic structure associated with species versus that of populations within species. Consequently, as both the genomic and spatial resolution of data increases, a proliferation of artifactual species results as within-species population lineages, detected due to restrictions in gene flow, are identified as distinct species. The toll of this extends beyond systematic studies, getting magnified across the many disciplines that rely upon an accurate framework of identified species. Here we present the first of a new class of approaches that addresses this issue by incorporating an extended speciation process for species delimitation. We model the formation of population lineages and their subsequent development into independent species as separate processes and provide for a way to incorporate current understanding of the species boundaries in the system through specification of species identities of a subset of population lineages. As a result, species boundaries and within-species lineages boundaries can be discriminated across the entire system, and species identities can be assigned to the remaining lineages of unknown affinities with quantified probabilities. In addition to the identification of species units in nature, the primary goal of species delimitation, the incorporation of a speciation model also allows us insights into the links between population and species-level processes. By explicitly accounting for restrictions in gene flow not only between, but also within, species, we also address the limits of genetic data for delimiting species. Specifically, while genetic data alone is not sufficient for accurate delimitation, when considered in conjunction with other information we are able to not only learn about species boundaries, but also about the tempo of the speciation process itself.  相似文献   

7.
8.
9.
Studies of biodiversity in the Maghreb have revealed high genetic diversity and divergent genetic lineages among many taxa including squamates. Geographic barriers such as the Atlas Mountains are one of the key factors promoting genetic differentiation and the high levels of endemism. The lizard-fingered gecko Saurodactylus brosseti is endemic to Morocco. Its range includes both sides of the Atlas Mountains, and although high diversity was previously identified within the species, much of the range was unsampled. To understand the evolutionary and biogeographical history of this species, we used mitochondrial and nuclear DNA sequence data from 64 populations sampled across the entire species range. We employed phylogenetic methods based on gene trees and species trees as well as a time calibrated Bayesian genealogy and coalescent species delimitation approaches. We uncovered four highly divergent and allopatric mitochondrial lineages that did not share haplotypes at variable nuclear loci, suggesting the four groups have been evolving independently since the Miocene, according to our molecular dating estimates. These results coupled with the geographic pattern of genetic diversity suggest a possible role of the Atlas Mountains for the divergence observed between the four lineages of S. brosseti, while each lineage probably later underwent several episodes of fragmentation followed by (re-) expansion during Pleistocene climatic oscillations. Bayesian species delimitation analysis indicates that the four lineages may well be distinct species but we suggest that detailed morphological analyses are needed prior to taxonomic changes. The four lineages represent ancient independent evolutionary units, and deserve conservation management as distinct entities.  相似文献   

10.
11.
Although tropical and subtropical Asia harbour a high level of species diversity, their species richness can be underestimated because species which are in fact distinct have not been separately identified. In this study, we delimit Bambusicola thoracica into two full species, the Chinese bamboo partridge (B. thoracica) in continental Asia and the Taiwanese bamboo partridge (B. sonorivox) on the island of Taiwan, using coalescent‐based multilocus division and diagnosable vocalization patterns. Isolation‐with‐migration analysis indicated that the two bamboo partridges diverged approximately 1.8 million years ago, with gene flow present most probably during the early stages of their divergence. This conclusion supports the hypothesis that diverging lowland lineages spread across the Asian mainland, and continental islands have more opportunities for secondary contact than highland ones when the sea level was low. Our results imply that conservation of biodiversity in tropical and subtropical Asia could be hindered by overlooking numerous ‘hidden’ species and highlight the importance of re‐examining the taxonomic statuses of species in this region traditionally defined as polytypic.  相似文献   

12.
Otocinclus cocama, a uniquely colored species of the loricariid catfish genus Otocinclus described solely from the type locality in the lower Ucayali River in northern Peru, is reported occurring in the Tigre River, a tributary to the Marañón River that drains a different section of the Andean Mountain range in the western Amazon. Both populations differ in the number of dark bars spanning the flanks of the body, and we investigated whether these morphotypes constitute distinct species. The body shapes of populations from the Tigre and Ucayali rivers were compared using geometric morphometrics. Although principal component analysis detected a broad overlap between populations, multivariate analysis of variance and linear driscriminat analysis revealed a subtle differentiation between the populations of the two hydrographic basins. Average body shape of the Ucayali River population tend to be slightly higher than that of the Tigre River, with the caudal peduncle stretched vertically in the Ucayali population. Multivariate regression of shape and centroid size revealed an allometric effect of 10.7% (p < 0.001), suggesting that the variation between Tigre and Ucayali populations was purely shape variation. Molecular data of coI, cytb, nd2, and 16S mitochondrial genes indicated a nucleotide diversity range from 0.001 to 0.003, and haplotypic diversity range from 0.600 ± 0.11 to 0.79 ± 0.07. The median-joining haplotype network for the concatenated matrix exhibited two divergent haplogroups related to the geographic area and separated by <10 mutational steps. The molecular species delimitation methods based on distance (automatic barcode gap discovery and assemble species by automatic partitioning) recovered two molecular lineages evolving independently, being one of the lineages formed by individuals from both populations. Tree-based methods (generalized mixed Yule coalescent and Bayesian implementation of the Poisson tree process) recovered similar topologies and supported single lineage recognition. Methods of molecular delimitation of species disclosed the high similarity between the two populations of Otocinclus cocama, further supported by the presence of old haplotypes common to both groups which could indicate that the populations still maintain gene flow. Although the morphological data reveal a subtle variation between both river basins, the molecular data suggest a weak population structuration based on hydrographic areas, but not different species lineages, therefore Otocinclus cocama is composed of a single lineage with two distinct morphotypes.  相似文献   

13.
Genealogical discordance, or when different genes tell distinct stories although they evolved under a shared history, often emerges from either coalescent stochasticity or introgression. In this study, we present a strong case of mito‐nuclear genealogical discordance in the Australian rainforest lizard species complex of Saproscincus basiliscus and S. lewisi. One of the lineages that comprises this complex, the Southern S. basiliscus lineage, is deeply divergent at the mitochondrial genome but shows markedly less divergence at the nuclear genome. By placing our results in a comparative context and reconstructing the lineages' demography via multilocus and coalescent‐based approximate Bayesian computation methods, we test hypotheses for how coalescent variance and introgression contribute to this pattern. These analyses suggest that the observed genealogical discordance likely results from introgression. Further, to generate such strong discordance, introgression probably acted in concert with other factors promoting asymmetric gene flow between the mitochondrial and nuclear genomes, such as selection or sex‐biased dispersal. This study offers a framework for testing sources of genealogical discordance and suggests that historical introgression can be an important force shaping the genetic diversity of species and their populations.  相似文献   

14.
The process of discovering species is a fundamental responsibility of systematics. Recently, there has been a growing interest in coalescent‐based methods of species delimitation aimed at objectively identifying species early in the divergence process. However, few empirical studies have compared these new methods with character‐based approaches for discovering species. In this study, we applied both a character‐based and a coalescent‐based approaches to delimit species in a closely related avian complex, the light‐vented/Taiwan bulbul (Pycnonotus sinensis/Pycnonotus taivanus). Population aggregation analyses of plumage, mitochondrial and 13 nuclear intron character data sets produced conflicting species hypotheses with plumage data suggesting three species, mitochondrial data suggesting two species, and nuclear intron data suggesting one species. Such conflict is expected among recently diverged species, and by integrating all sources of data, we delimited three species verified with independently congruent character evidence as well as a more weakly supported fourth species identified by a single character. Attempts to validate species hypothesis using Bayesian Phylogenetics and Phylogeography (BPP), a coalescent‐based method of species delimitation, revealed several issues that can seemingly affect statistical support for species recognition. We found that θ priors had a dramatic impact on speciation probabilities, with lower values consistently favouring splitting and higher values consistently favouring lumping. More resolved guide trees also resulted in overall higher speciation probabilities. Finally, we found suggestive evidence that BPP is sensitive to the divergent effects of nonrandom mating caused by intraspecific processes such as isolation‐with‐distance, and therefore, BPP may not be a conservative method for delimiting independently evolving population lineages. Based on these concerns, we questioned the reliability of BPP results and based our conclusions about species limits exclusively on character data.  相似文献   

15.
Recent conceptual, technological and methodological advances in phylogenetics have enabled increasingly robust statistical species delimitation in studies of biodiversity. As the variety of evidence purporting species diversity has increased, so too have the kinds of tools and inferential power of methods for delimiting species. Here, we showcase an organismal system for a data‐rich, comparative molecular approach to evaluating strategies of species delimitation among monitor lizards of the genus Varanus. The water monitors (Varanus salvator Complex), a widespread group distributed throughout Southeast Asia and southern India, have been the subject of numerous taxonomic treatments, which have drawn recent attention due to the possibility of undocumented species diversity. To date, studies of this group have relied on purportedly diagnostic morphological characters, with no attention given to the genetic underpinnings of species diversity. Using a 5‐gene data set, we estimated phylogeny and used multilocus genetic networks, analysis of population structure and a Bayesian coalescent approach to infer species boundaries. Our results contradict previous systematic hypotheses, reveal surprising relationships between island and mainland lineages and uncover novel, cryptic evolutionary lineages (i.e. new putative species). Our study contributes to a growing body of literature suggesting that, used in concert with other sources of data (e.g. morphology, ecology, biogeography), multilocus genetic data can be highly informative to systematists and biodiversity specialists when attempting to estimate species diversity and identify conservation priorities. We recommend holding in abeyance taxonomic decisions until multiple, converging lines of evidence are available to best inform taxonomists, evolutionary biologists and conservationists.  相似文献   

16.
17.
Perhaps the most important recent advance in species delimitation has been the development of model‐based approaches to objectively diagnose species diversity from genetic data. Additionally, the growing accessibility of next‐generation sequence data sets provides powerful insights into genome‐wide patterns of divergence during speciation. However, applying complex models to large data sets is time‐consuming and computationally costly, requiring careful consideration of the influence of both individual and population sampling, as well as the number and informativeness of loci on species delimitation conclusions. Here, we investigated how locus number and information content affect species delimitation results for an endangered Mexican salamander species, Ambystoma ordinarium. We compared results for an eight‐locus, 137‐individual data set and an 89‐locus, seven‐individual data set. For both data sets, we used species discovery methods to define delimitation models and species validation methods to rigorously test these hypotheses. We also used integrated demographic model selection tools to choose among delimitation models, while accounting for gene flow. Our results indicate that while cryptic lineages may be delimited with relatively few loci, sampling larger numbers of loci may be required to ensure that enough informative loci are available to accurately identify and validate shallow‐scale divergences. These analyses highlight the importance of striking a balance between dense sampling of loci and individuals, particularly in shallowly diverged lineages. They also suggest the presence of a currently unrecognized, endangered species in the western part of A. ordinarium's range.  相似文献   

18.
Accurate species delimitation is important as species are a fundamental unit in ecological, evolutionary and conservation biology research. In lichenized fungi, species delimitation has been difficult due to a lack of taxonomically important characteristics and due to the limits of traditional, morphology‐based species concepts. In this study we reassess the current taxonomy of the Parmotrema perforatum group, which recognizes six closely related species divided into three species pairs, each pair comprising one apotheciate (sexual) and one sorediate (asexual) species. Each pair is further characterized by a distinct combination of secondary metabolites. It was hypothesized that the three apotheciate species are reproductively isolated sibling species and that each sorediate species evolved once from the chemically identical apotheciate species. In this study, species boundaries were re‐examined using an integrative approach incorporating morphological, chemical and molecular sequence data to delimit species boundaries. Phylogenetic trees were inferred from a seven‐locus DNA sequence dataset using concatenated gene tree and coalescent‐based species‐tree inference methods. Furthermore, we employed a multi‐species coalescent method to validate candidate species. Micromorphological measurements of conidia were found to be congruent with phylogenetic clusters. Each approach that we applied to the P. perforatum group consistently recovered four of the currently circumscribed species (P. perforatum, P. hypotropum, P. subrigidum and P. louisianae), whereas P. preperforatum and P. hypoleucinum were consistently combined and are thus interpreted as conspecific.  相似文献   

19.
An accurate understanding of species diversity is essential to studies across a wide range of biological subdisciplines. However, delimiting species remains challenging in evolutionary radiations where morphological diversification is rapid and accompanied by little genetic differentiation or when genetic lineage divergence is not accompanied by morphological change. We investigate the utility of a variety of recently developed approaches to examine genetic and morphological diversity, and delimit species in a morphologically conserved group of Southeast Asian lizards. We find that species diversity is vastly underestimated in this unique evolutionary radiation, and find an extreme case where extensive genetic divergence among lineages has been accompanied by little to no differentiation in external morphology. Although we note that different conclusions can be drawn when species are delimited using molecular phylogenetics, coalescent‐based methods, or morphological data, it is clear that the use of a pluralistic approach leads to a more comprehensive appraisal of biodiversity, and greater appreciation for processes of diversification in this biologically important geographic region. Similarly, our approach demonstrates how recently developed methodologies can be used to obtain robust estimates of species limits in “nonadaptive” or “cryptic” evolutionary radiations.  相似文献   

20.
Accurate species delimitation of sampled biological material is critical for a range of studies. Although the DNA barcodes developed in recent years are useful for identifying numerous well differentiated species that have not experienced frequent gene flow, they fail to delimit recently diverged species, especially those with extensive introgressions. Here we use five Rhododendron species growing together on the same mountain as a model system to compare the species delimitation effectiveness of the DNA barcodes (internal transcribed spacer, matK, psbA‐trnH, and rbcL) previously proposed versus 15 pairs of microsatellite markers. Using these markers, we genotyped 129 individuals, which were members of five species according to morphological identification. We identified five simple sequence repeat genetic clusters (independently evolving lineages) corresponding to the morphological identification. However, we found that numerous individuals contained cryptic hybrid introgressions from the other species. The four DNA barcodes could not delimit three out of four closely related species that showed clear morphological differentiation and cryptic introgressions. Even after excluding all cryptic hybrids, two closely related species could not be successfully identified. The low discrimination ability of the DNA barcodes for closely related Rhododendron species could result from two, not mutually exclusive factors: introgressive hybridization and incomplete lineage sorting. Our results highlight the importance of simple sequence repeat markers in delimiting closely related species and identifying cryptic introgressions in the absence of morphological changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号