首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although ‘large branchiopods’ are an important faunal element of the temporary water bodies in Australia's vast (semi)arid regions, knowledge of their diversity, distribution and ecology is still poor. Here, on the basis of one mitochondrial [cytochrome oxidase subunit I (COI)] and three nuclear (EF1α, ITS2 and 28S) markers, we present new data relating to the diversity and phylogeography of eastern and central Australian Eocyzicus (Spinicaudata) fauna. Using a combination of phylogenetic, haplotype network and DNA barcoding analyses of COI, 312 individuals were grouped into eleven main lineages. To infer whether these lineages are reproductively isolated from each other (the prerequisite for species delineation according to the Biological or Hennigian Species Concepts), separate analyses of each nuclear marker were performed on a subset of specimens. Although some lineages are non‐monophyletic in the analysis of one nuclear marker, this is mostly attributed to processes such as incomplete lineage sorting rather than ongoing reproduction. The eleven lineages translate into at least seven species whose reproductive isolation is additionally indicated by sympatry, including both Australian Eocyzicus species previously described. Another three lineages may constitute further species, but their clear allopatric distribution rendered the test for reproductive isolation inapplicable. One lineage appears not to be reproductively isolated and is therefore considered a genetically distinct lineage within one of the other species, and one divergent lineage within E. argillaquus may constitute an additional species. Although sympatry is very common – six species occur in the central Paroo River catchment in eastern Australia, for instance – syntopic occurrence is rare. It is possible that a combination of differing habitat preferences and priority effects inhibits the presence of more than one Eocyzicus species per water body. There is little to no genetic differentiation between certain populations of the species found in eastern and central Australia (e.g. the Murray–Darling Basin, the Bulloo River catchment and the eastern and northern Lake Eyre Basin; LEB), suggesting high dispersal rates within this large area. Between the central Australian populations themselves, however (e.g. those inhabiting the central and western LEB), genetic differentiation is pronounced, probably as a result of the lack of abundance of important dispersal vectors (aquatic birds) and the lower diversity and density of suitable habitats in the area. The most prominent biogeographical break exists towards north‐eastern Australia (north‐east LEB), which does not share species with any other region studied.  相似文献   

2.
Species delimitation is a permanent issue in systematics. The increasing recognition of geographically isolated populations as independent lineages allowed by new methods of analysis has inflated the species-populations dilemma, which involves deciding whether to consider separate lineages as different species or structured genetic populations. This is commonly observed between fishes of adjacent river basins, with some lineages being considered allopatric sister species and others considered isolated populations or variants of the same species. Pseudocorynopoma doriae is a characid diagnosed from its single congener by the number of anal-fin rays and sexually dimorphic characters of males, including distinct fin colouration. The authors found variation in the colour pattern between isolated populations previously identified as P. doriae but no variation in scale or fin-ray counts. They analysed molecular evidence at the population level and morphological differences related to life history (e.g., colour dimorphism related to inseminating behaviour). The results provide compelling evidence for the recognition of a new species of Pseudocorynopoma despite the lack of discrete differences in meristic data. The recognition of the new species is consistent with biogeographical evidence for the long-term isolation of the respective river drainages and with differences between the ichthyofaunal communities of these rivers.  相似文献   

3.
The adult morphology of the Australian Limnadopsis shows some remarkable differences to that of other Limnadiidae. These differences are not reflected in its larval development. In Limnadopsis parvispinus, larval development comprises six stages. In stages I and II only the three naupliar appendages are present: the antennule as a small bud, the biramous antenna as the main swimming organ, and the mandible. The antennal protopod bears two endites, the proximal naupliar process and a more distal endite. In stage III a bifid naupliar process (in earlier stages not bifid) and the first signs of the carapace and trunk limb anlagen (undifferentiated rudiments) appear. In stage IV the carapace anlagen become more pronounced. The number of trunk limb anlagens increases to five, and differentiation has commenced. In stage V the first five pairs of trunk limbs are differentiated to varying degrees. The anterior-most four pairs of trunk limbs are subdivided into five endites, a small endopod, an exopod and an epipod. The bivalved carapace covers the anterior-most limbs. In larval stage VI the carapace is larger and the trunk limbs are further differentiated. A general pattern in the sequence of larval stages is the increasing number of sensilla on the antennules. From the last larval to the first postlarval stage, a significant change in morphology takes place. The trunk limbs are now used for swimming. Typical larval organs are much smaller than in the last larval stage. A comparison with other representatives of the Limnadiidae shows a high degree of correspondence, with most differences explained by the heterochronous appearance of characters during development. Five to seven stages are described for all studied Limnadiidae, including one particular stage in which four fully developed setae, a bifid naupliar process and the first signs of carapace anlagen are present. These characters are found in stage III in L. parvispinus, Limnadia stanleyana, Eulimnadia texana, and Imnadia yeyetta but in stage IV in E. braueriana and L. lenticularis. Based on a comparison of the larval stages of six limnadiid and one cyzicid species, we conclude that at least six naupliar stages belong to the limnadiid ground pattern.  相似文献   

4.
Leptodactylus fuscus is a neotropical frog ranging from Panamá to Argentina, to the east of the Andes mountains, and also inhabiting Margarita, Trinidad, and the Tobago islands. We performed phylogenetic analyses of 12S rRNA, 16S rRNA, tRNA-Leu, and ND1 mitochondrial (mt) DNA sequences from specimens collected across the geographic distribution of L. fuscus to examine two alternative hypotheses: (i) L. fuscus is a single, widely distributed species, or (ii) L. fuscus is a species complex. We tested statistically for geographic association and partitioning of genetic variation among mtDNA clades. The mtDNA data supported the hypothesis of several cryptic species within L. fuscus. Unlinked mtDNA and nuclear markers supported independently the distinctness of a 'northern' phylogenetic unit. In addition, the mtDNA data divided the southern populations into two clades that showed no sister relationship to each other, consistent with high differentiation and lack of gene flow among southern populations as suggested by allozyme data. Concordance between mtDNA and allozyme patterns suggests that cryptic speciation has occurred in L. fuscus without morphological or call differentiation. This study illustrates a case in which lineage splitting during the speciation process took place without divergence in reproductive isolation mechanisms (e.g. advertisement call in frogs), contrary to expectations predicted using a biological species framework.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 325–341. No claim to original US government works.  相似文献   

5.
Rhinobranchipus martensi gen. et sp. nov. (Anostraca: Branchipodidae) was collected from a shallow temporary pool in the surroundings of Grahamstown (Cape Province, South Africa) (33o18'S, 26o32'E). Rhinobranchipus shares partial fusion of the chitinized basal parts of the male antennae, the so-called clypeus, with other Branchipodidae. The new genus is distinguished from confamilial genera by the morphology of the basal part of the penes. The new species, known from its type locality only, should be considered endangered, if it has not already become extinct as a result of recent modifications of its habitat.  相似文献   

6.
The delineation of Gammarus species is controversial because of extensive intraspecific morphological variation. The current study examined DNA sequences from the mitochondrial cytochrome c oxidase subunit I and the nuclear 28S genes as well as morphological and ecological data to determine the species boundaries of Gammarus species from China. The results of molecular analyses showed that Gammarus sp1, G. sp2, G. sp3, and G. sp4 are monophyletic and deeply divergent from sister groups. Detailed morphological and ecological comparisons with closely related species were consistent with molecular analyses. Gammarus sp1, G. sp2, G. sp3, and G. sp4 were described as four new species: Gammarus illustris sp. nov. , Gammarus clarus sp. nov. , Gammarus hypolithicus sp. nov. , and Gammarus parvioculus sp. nov. We recommend that molecular detected species should be formally named and described for future research. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 215–253.  相似文献   

7.
As part of a larger project examining and comparing the ontogeny of all major taxa of the Branchiopoda in a phylogenetic context, the larval development of Caenestheriella gifuensis (Ishikawa, 1895), a Japanese spinicaudatan ‘conchostracan’, is described by scanning electron microscopy. Seven different larval stages are recognised, in most cases based on significant morphological differences. They range in length from about 200 to 850 μm. Nauplius 1 has a plumb and lecithotrophic appearance with a rounded hind body and a labrum with an incipient medial spine. Limb segmentation is mostly unclear but the second antennae have more putative segments delineated than are expressed in the later stages. Feeding structures such as the mandibular coxal process and antennal coxal spine are only weakly developed. Nauplius 2 is very different from nauplius 1 and has three large spines on the labral margin and two long caudal spines. Feeding structures such as the mandibular coxal process and various spines and setae are developed, but whether feeding begins at this stage was not determined. The mandible has developed an ‘extra’ seta on endopod segment 1, absent in Nauplius 1. The segmentation of the second antenna has changed significantly due to fusions of various early segments. Nauplius 3 is like nauplius 2 in morphological detail, but larger and more elongate. Nauplius 4 has developed a pair of small anlagen of the carapace and rudiments of the first five pairs of trunk limbs, and the coxal spine of the antenna has become distally bifid. Nauplius 5 has a larger carapace anlage, externally visible enditic portions of the elongate trunk limbs, and a pair of primordial dorsal telson setae. Nauplius 6 has a larger and partly free carapace and better-developed, partly free trunk limbs with incipient enditic, endopodal, and exopodal setation. A pair of caudal spines, dorsal to the large caudal spines, has appeared. Nauplius 7 is quite similar to nauplius 6 but is larger and has slightly longer caudal and labral spines; also, the setation of the most anterior trunks limbs is better developed. The larval development is largely similar to that of other spinicaudatans. The larval mandible, which is evolutionarily conservative within the Branchiopoda, reveals a setation pattern similar to that of the Anostraca and Notostraca (two setae on mandibular endopod segment 1). Most other spinicaudatans and all examined laevicaudatans share another setal pattern (one seta on mandibular endopod segment 1), which could indicate a close relationship among these taxa. The second antenna undergoes a special development, which provides an insight into the evolution of this limb within the Branchiopoda. In nauplius 1 the basipod, endopod, and exopod are all superficially divided into a relatively high number of segments. In later nauplii some of these have fused, forming fewer but larger segments. We suggest that this ontogeny reflects the evolution of antennae in the conchostracans. Various aspects of the morphology of the antennae are discussed as possible synapormorphies for either the Diplostraca or subgroups of the Conchostraca.  相似文献   

8.
Inside the labrum of Leptestheria dahalacensis are situated three types of large epidermal gland cells, whose ducts open onto the outer dorsal surface of the labrum. SEM revealed that the thin ducts of the A-type gland cells open out behind the epipharynx at the end of small, conically shaped protuberances, the two paired ducts of the B-type gland cells lead into the distal portion of the labrum, and the external opening of the single duct of the C-type gland cells lies on the dorsal lobe of the labrum. The ducts of the three different gland cell types have the same fundamental constitution, but vary in diameter. Each secretory unit consists of a pair of gland cells (A, B, or C) and a secretory duct. The duct is formed by ring-shaped folding of one anteroposteriorly elongated epidermal cell (duct cell), whose ends adhere closely to one another. A further ring-folded epidermal cell (accessory cell), but flattened in shape, is interposed, like a sleeve-connection, between the gland cells and the duct cell. The reservoirs of gland cells open into the lumen of the duct. Discontinuous deposits of highly electron-dense matter are present on the plasma membrane of the accessory cell delimiting the initial part of the duct lumen, while the plasma membrane of the duct cell facing the lumen is cuticularized. The cytoplasm of the accessory cell, on examination by TEM, appears quite similar to that of the duct cell, except for the different distribution and greater abundance of microtubules. Similarly organized tricellular tegumental glands also commonly occur in other Crustacea, both Malacostraca and non-Malacostraca. Possible functions of secretions from the three different types of gland cells present in the labrum of L. dahalacensis are discussed.  相似文献   

9.
We present phylogenetic relationships and phylogeographic patterns of the two species of bulldog bats, genus Noctilio. Using a comprehensive sampling of 118 individuals throughout the species distribution, we investigated the distribution of molecular variation in one nuclear and two mitochondrial markers. Phylogenetic trees do not recover Noctilio albiventris as a monophyletic group and point to three similar‐age intraspecific genetic lineages, suggesting cryptic diversity in this taxon. These lineages correspond to the subspecies previously proposed, and are strongly associated with major river basins in South America. Analyses also suggest a very recent origin for the fishing bat Noctilio leporinus, which probably originates from N. albiventris, with a population expansion corresponding to its invasion in South America. Based on our analysis, the speciation event was dated in the Pleistocene epoch and seems to be associated with the variation of the sea level in the Caribbean islands. The present work indicates how phylogeographic studies support the identification of independent evolutionary lineages, driving new systematic/taxonomic investigations, while at the same time shed light on the role of the Caribbean in shaping Neotropical bat fauna diversity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

10.
11.
Hamer  M. L.  Martens  K. 《Hydrobiologia》1998,384(1-3):151-165
The Drakensberg forms part of the Escarpment which separates the coastal plain from the inland plateau in southern Africa. This mountain range runs for about 400 km along the KwaZulu-Natal/Lesotho border and into the Eastern Cape province of South Africa. Altitude ranges from 1500 to 3000 masl. Rock pools and tarns are the main type of temporary pool habitat in the Drakensberg. 90 different habitats were sampled over a four-year period and various physical and chemical characteristics of these pools are presented. Large branchiopods occurred in 26 of these habitats. Five Branchipodopsis and two Streptocephalus species composed the anostracan fauna, while Triops granarius was collected only from the summit of the Escarpment at one locality. Four genera of Spinicaudata are represented in the Drakensberg but the current state of the taxonomy of this group does not allow identification to species level. Absence of large branchiopods from a high percentage of temporary habitats could be attributed to predation or many pools may not be sufficiently ephemeral. Most pools were inhabited by a single species of large branchiopod. This could be a result of low levels of food resources in pools, as indicated by extremely low conductivities. Restricted food resources could also be the limiting factor in the distribution of Streptocephalus and Triops which are only found in pools with higher conductivities. Four of the five Branchipodopsis species are endemic to the Drakensberg pools. These habitats are also inhabited by a high diversity of ostracods and other micro-crustaceans. Most of the KwaZulu-Natal Drakensberg falls within conservation areas but the Lesotho and Free State localities could be threatened by future development.  相似文献   

12.
Species of the goby genus Gnatholepis Bleeker, 1874, are common inhabitants of shallow tropical seas worldwide. In this study, mitochondrial DNA sequence (ND2 gene), from 349 Gnatholepis individuals sampled from across the South and Central Pacific and Caribbean, is used to infer phylogeny and determine species boundaries. Seven species of Gnatholepis are recognized: the Indo-Pacific G. anjerensis (Bleeker, 1851) [ G. cauerensis (Bleeker, 1853) is a synonym]; G. scapulostigma Herre, 1953; G. davaoensis Seale, 1910; G. knighti Jordan & Evermann, 1903; G. gymnocara Randall & Greenfield, 2001; G.  sp. Randall & Greenfield, 2001; and the Atlantic/Caribbean G. thompsoni Jordan, 1904. Results from the molecular phylogeny are compared with a previous morphology-based revision of the genus in order to establish which morphological characters diagnose species in correspondence with the molecular phylogeny.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 142 , 573–582.  相似文献   

13.
Recent studies have revealed high local diversity and endemism in groundwaters, and showed that species with large ranges are extremely rare. One of such species is the cave shrimp Troglocaris anophthalmus from the Dinaric Karst on the western Balkan Peninsula, apparently uniform across a range of more than 500 kilometres. As such it contradicts the paradigm that subterranean organisms form localized, long-term stable populations that cannot disperse over long distances. We tested it for possible cryptic diversity and/or unexpected evolutionary processes, analysing mitochondrial (COI, 16S rRNA) and nuclear (ITS2) genes of 232 specimens from the entire range. The results of an array of phylogeographical procedures congruently suggested that the picture of a widespread, continuously distributed and homogenous T. anophthalmus was wrong. The taxon is composed of four or possibly five monophyletic, geographically defined phylogroups that meet several species delimitation criteria, two of them showing evidence of biological reproductive isolation in sympatry. COI genetic distances between phylogroups turned out to be a poor predictor, as they were much lower than the sometimes suggested crustacean threshold value of 0.16 substitutions per site. Most results confirmed the nondispersal hypothesis of subterranean fauna, but the southern Adriatic phylogroup displayed a paradoxical pattern of recent dispersal across 300 kilometres of hydrographically fragmented karst terrain. We suggest a model of migration under extreme water-level conditions, when flooded poljes could act as stepping-stones. In the north of the range (Slovenia), the results confirmed the existence of a zone of unique biogeographical conflict, where surface fauna is concordant with the current watershed, and subterranean fauna is not.  相似文献   

14.
We describe three new species of forest robin in the genus Stiphrornis; two from West Africa and one from the Congo Basin. Each species represents a distinct phylogenetic lineage based on genetic analysis. In addition to genetic differentiation, each new species is diagnosable from other Stiphrornis lineages by morphology, and by plumage. One of the new species appears to be restricted to the Central and Brong-Ahafo Regions of Ghana, and another is restricted to Benin and the Central Region of Ghana. In Ghana, these two new species presumably come into contact with Stiphrornis erythrothorax (Western Region of Ghana and westward), and there is evidence that one of the new species has a distinguishably different song from erythrothorax. The distribution of the third new species is primarily on the south bank of the Congo River, near the city of Kisangani. Recognition of these species provides additional evidence that Afrotropical forests are harbouring substantial cryptic diversity, and that our knowledge of the drivers of this diversity remains poorly documented across the region.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:BF2A0BE6-1140-4EFF-9035-380D61AB03AE  相似文献   

15.
16.
Galaziella baikalensis gen. et sp. nov. is described from Olkhon Island, Lake Baikal, Russia. The genus is assigned to the family Chirocephalidae Daday, 1910, on the basis of the following features: the male has two-segmented antenna, its basal segment bearing two leaf-shaped antennal appendages, all thoracopods with two distinctly divided pre-epipodites, and genital segments containing two clearly defined seminal vesicles. Galaziella is well distinguished from other genera of the family by the apical part of the penes, armed with "two spiniform processes" at each apex, instead of a single spine or toothed plate. Such male genital processes have not yet been found in Chirocephalidae, so that the diagnosis of the family is revised and two sub-families are proposed herein. Up to the present, 10 species belonging to 7 genera, including Galaziella baikalensis, and 5 families of Anostraca – Artemiidae, Branchinectidae, Branchipodidae, Chirocephalidae, and Thamnocephalidae – have been found in East Asia and its adjacent areas, including the Russian Far East, Mongolia, China, Korea, and Japan. The list includes all synonymic taxa. A distribution map and a key to the East Asian species of the family Chirocephalidae are provided. Received: November 22, 1999 / Accepted: May 2, 2000  相似文献   

17.
Temperate reefs, built by multilayers of encrusting algae accumulated during hundreds to thousands of years, represent one of the most important habitats of the Mediterranean Sea. These bioconstructions are known as “coralligenous” and their spatial complexity allows the formation of heterogeneous microhabitats offering opportunities for a large number of small cryptic species hardly ever considered.Although sponges are the dominant animal taxon in the coralligenous rims with both insinuating and perforating species, this group is until now poorly known. Aim of this work is to develop a reference baseline about the taxonomic knowledge of sponges and, considering their high level of phenotypic plasticity, evaluate the importance of coralligenous accretions as a pocket for biodiversity conservation.Collecting samples in four sites along the coast of the Ligurian Sea, we recorded 133 sponge taxa (115 of them identified at species level and 18 at genus level). One species, Eurypon gracilis is new for science; three species, Paratimea oxeata, Clathria (Microciona) haplotoxa and Eurypon denisae are new records for the Italian sponge fauna, eleven species are new findings for the Ligurian Sea. Moreover, seventeen species have not been recorded before from the coralligenous community. The obtained data, together with an extensive review of the existing literature, increase to 273 the number of sponge species associated with the coralligenous concretions and confirm that this habitat is an extraordinary reservoir of biodiversity still largely unexplored, not only taxonomically, but also as to peculiar adaptations and life histories.  相似文献   

18.
19.
20.
Summary

The production of low numbers of offspring that exhibit a mixture of male and female traits (termed “intersexes”) is commonly reported for crustaceans. The production of intersexes has been ascribed to both genetic and non-genetic (e.g., parasitic infections and environmental pollutants) causes. Herein we report on two observed types of intersexes in the clam shrimp Eulimnadia texana: (1) a “morphological” intersex, possessing secondary male characteristics (e.g., claspers) and an eggproducing gonad, and (2) a “gonadal” intersex, possessing primarily male traits (e.g., male secondary sexual characters and male gamete production) but also producing low levels of abortive female gametes. We propose that these intersexes are likely the products of low frequencies of crossing over between the sex determining chromosomes that result in the array of observed mixed sexual phenotypes. Additionally, we suggest that the low-level production of intersexes, combined with the ephemeral nature of the habitats occupied by these shrimp, may explain the preponderance of androdioecy (mixtures of males and hermaphrodites) found in these clam shrimp, and possibly branchiopods more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号