首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

2.
A total of 56 morphological characters were analyzed for 53 cirrospiline species that represent all of the 17 described genera of the tribe. The other taxa of the Eulophinae included in the analysis were six species of six representative genera in the tribe Eulophini, a species of Elasmus (the only genus comprising the tribe Elasmini), and a species of Trichospilus (unplaced). Trichospilus and two of the six genera of Eulophini examined were placed within Cirrospilini. Monophyly of Cirrospilini (when these two genera of Eulophini and Trichospilus are included) and of the cirrospiline genera for which more than one species were examined was supported, but the relationships between the genera were poorly resolved. An exception was Cirrospilus, the largest genus in the Cirrospilini, monophyly of which was not supported to any extent.  相似文献   

3.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

4.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

5.
The evolution of parental care strategies in aculeate (stinging) wasps and bees has been much studied from a functional perspective, but relatively little phylogenetic information is available to place this in a rigorous historical context, especially at the species level. We used mitochondrial cytochrome oxidase I and two nuclear genes, the elongation factor‐1α and LW rhodopsin, to investigate the phylogeny of Sphecidae digger wasps. We focus particularly on the tribe Ammophilini, a clade of nonsocial apoid wasps that exhibit unusually diverse parental care strategies. We analysed a 2232 bp dataset for 40 ammophilines plus nine other taxa from within the remaining Sphecidae. Our Bayesian phylogeny provides strong support for the monophyly of Ammophilini and for the monophyly of all six individual ammophiline genera, except that the position of P. affinis within the genus Podalonia is only weakly supported. The monophyly of some, but not all, previously designated species groups within the genus Ammophila is supported. We discuss the implications of our results for the evolution of morphological traits used previously in ammophiline systematics.  相似文献   

6.
Abstract We develop a morphological dataset for the rove beetle subfamily Euaesthetinae comprising 167 morphological characters (135 adult and 32 larval) scored from 30 terminal taxa including 25 ingroup terminals (from subfamilies Euaesthetinae and Steninae) and five outgroups. Four maximum parsimony analyses using different sets of terminals and character sets were run to test the monophyly of (1) Euaesthetinae, (2) Steninae, (3) Euaesthetinae + Steninae, (4) euaesthetine tribes Austroesthetini, Alzadaesthetini, Euaesthetini, Fenderiini and Stenaesthetini, and (5) the ten currently known austral endemic genera together. Analyses of adult and larval character sets separately and in combination recovered the monophyly of Euaesthetinae, Steninae, and both subfamilies together, with strong support. Analysis of 13 ingroup terminals for which complete data were available suggests that monophyly of Euaesthetinae is supported by 19 synapomorphies (13 adult, six larval), of Steninae by 23 synapomorphies (14 adult, nine larval), and of both subfamilies together by 24 synapomorphies (21 adult, three larval). Within Euaesthetinae, only the tribe Stenaesthetini was recovered as monophyletic based on adult characters, and in no analyses were the ten austral endemic genera recovered as a monophyletic group. Phylogenetic relationships among euaesthetine genera were weakly supported, although analyses including adult characters supported monophyly of Octavius and Protopristus separately, and of Octavius + Protopristus, Austroesthetus + Chilioesthetus and Edaphus + Euaesthetus. Steninae may include a third genus comprising two undescribed species probably possessing a ‘stick–capture’ method of prey capture, similar to that in Stenus. These two species formed a strongly supported clade recovered as the sister group of Stenus based on adult characters. Diagnoses and a key to adults are provided for the 15 euaesthetine genera currently known from the austral region (Australia, New Zealand, South Africa and southern South America). Euaesthetine larvae previously were known only for Euaesthetus, and we describe the larvae of nine more genera and provide the first larval identification key for genera of Euaesthetinae.  相似文献   

7.
The phylogeny of selected genera from four subfamilies of fungus gnats (Diptera: Mycetophilidae) – Manotinae, Leiinae, Sciophilinae and Gnoristinae (including Metanepsiini) – is reconstructed based on the combined analysis of five mitochondrial (12S, 16S, COI, COII, cytB) and two nuclear (28S, ITS2) gene markers. Results of the different analyses all support Manotinae as a monophyletic group, with Leiinae as the sister group. Allactoneura DeMeijere is nested in the monophyletic and strongly supported clade of Leiinae. The tribe Metanepsiini is revealed as paraphyletic and the genera Metanepsia Edwards and Chalastonepsia Søli do not appear to be closely related. The genera Docosia Winnertz, Ectrepesthoneura Enderlein, Novakia Strobl and Syntemna Winnertz were placed with a group of genera included traditionally in the Gnoristinae. The monophyly of Dziedzickia Johannsen and Phthinia Winnertz is not supported. The genera of Sciophilinae (excluding Paratinia Mik but including Eudicrana Loew) form a monophyletic group in the Bayesian model.  相似文献   

8.
We present a molecular phylogeny of Nitidulidae based on thirty ingroup taxa representing eight of the ten currently recognized subfamilies. Approximately 10 K base pairs from seven loci (12S, 16S, 18S, 28S, COI, COII and H3) were used for the phylogenetic reconstruction. The phylogeny supports the following main conclusions: (i) Cybocephalidae are formally recognized as a distinct family not closely related to Nitidulidae and its constituent taxa are defined; (ii) Kateretidae are sister to Nitidulidae; (iii) Cryptarchinae are monophyletic and sister to the remaining nitidulid subfamilies; (iv) subfamily Prometopinae stat. res. is reinstated and defined, to accommodate taxa allied to Axyra Erichson, Prometopia Erichson and Megauchenia MacLeay; (v) Amphicrossinae, Carpophilinae and Epuraeinae are shown to be closely related taxa within a well‐supported monophyletic clade; (vi) tribal affinities and respective monophyly within Nitidulinae are poorly resolved by our data and must be more rigorously tested as there was little or no support for prior morphologically based tribes or genus‐level complexes; (vii) Nitidulinae are found to be paraphyletic with respect to Cillaeinae and Meligethinae, suggesting that they should either be subsumed as tribes, or Nitidulinae should be divided into several subfamilies to preserve the status of Cillaeinae and Meligethinae; (viii) Teichostethus Sharp stat. res. is not a synonym of Hebascus Erichson and the former is reinstated as a valid genus. These conclusions and emendations are discussed in detail and presented within a morphological framework.  相似文献   

9.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

10.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister‐group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).  相似文献   

11.
Characeae (Charophyceae, Charophyta) contains two tribes with six genera: tribe Chareae with four genera and tribe Nitelleae, which includes Tolypella and Nitella. This paper uses molecular and morphological data to elucidate the phylogeny of Tolypella species in North America. In the most comprehensive taxonomic treatment of Characeae, 16 Tolypella species worldwide were subsumed into two species, T. intricata and T. nidifica, in two sections, Rothia and Tolypella respectively. It was further suggested that Tolypella might be a derived group within Nitella. In this investigation into species diversity and relationships in North American Tolypella, sequence data from the plastid genes atpB, psbC, and rbcL were assembled for a broad range of charophycean and land plant taxa. Molecular data were used in conjunction with morphology to test monophyly of the genus and species within it. Phylogenetic analyses of the sequence data showed that Characeae is monophyletic but that Nitelleae is paraphyletic with Tolypella sister to a monophyletic Nitella + Chareae. The results also supported the monophyly of Tolypella and the sections Rothia and Tolypella. Morphologically defined species were supported as clades with little or no DNA sequence differences. In addition, molecular data revealed several lineages and a new species (T. ramosissima sp. nov.), which suggests greater species diversity in Tolypella than previously recognized.  相似文献   

12.
Cyclocephaline scarabs, the second largest tribe of rhinoceros beetles, are important pollinators of early‐diverging angiosperm families in the tropics. The evolutionary history of cyclocephaline genera is poorly resolved and several genera are thought to be nonmonophyletic. We assess the monophyly of Mimeoma Casey, a group of Neotropical palm‐feeding scarabs, and its relationship to Cyclocephala with a phylogenetic analysis of 2899 bp of DNA sequence data and 18 morphological characters. All five species of Mimeoma were included in analyses along with species of Cyclocephala Dejean, Dyscinetus Harold and Tomarus Erichson as outgroup taxa. Nearly complete 28S, 12S and CO1 data were collected from 26 of 29 specimens, of which 16 samples were pinned, museum specimens. 28S data strongly support a nonmonophyletic Mimeoma; mitochondrial data (CO1 and 12S) suggest that Mimeoma species are nested within an apical clade of other Cyclocephala species; combined molecular and morphological data identify two strongly supported clades of Mimeoma species but do not support their sister relationship. Combined data show that Mimeoma species are nested within Cyclocephala, thus rendering Cyclocephala paraphyletic. Mimeoma is synonymized within Cyclocephala resulting in the following new combinations: Cyclocephala acuta Arrow n.comb ., Cyclocephala englemani (Ratcliffe) n.comb ., Cyclocephala maculata Burmeister n.comb ., Cyclocephala nigra (Endrödi) n.comb . and Cyclocephala signatoides Höhne n.comb . Our results demonstrate that pinned, museum specimens can be used to obtain DNA sequence data (particularly high‐copy gene regions) for evolutionary studies, and provide the first empirical support that host‐plant associations within cyclocephaline scarab clades are conserved at the plant family‐level.  相似文献   

13.
The tribe Sonerileae in tropical Africa and Madagascar is a morphologically diverse lineage that consists of 239 species in 10 genera. In this study, we present the first in-depth phylogenetic analysis of African Sonerileae to test monophyly of the currently recognized genera. Phylogenetic analyses were performed using sequence data from two nuclear (nrITS and nrETS) and three plastid loci (accD-psaI, ndhF and psbK-psbL). Sampling consisted of 140 accessions including 64 African, 27 Malagasy, 46 Asian, and three neotropical Sonerileae together with a broad outgroup sampling (105 spp.). Phylogenetic relationships were inferred using maximum likelihood and Bayesian inference approaches, and a careful reassessment of morphological characters was carried out. Our results neither support the monophyly of the Old World nor African Sonerileae. The monospecific African genus Benna is partially supported as sister to Phainantha, one of the basal neotropical lineages, while African and Malagasy Medinilla are nested among the SE Asian genera. Gravesia (116 spp.), the most species-rich and morphologically diverse genus in Madagascar, is recovered as monophyletic. The African genera of Sonerileae Calvoa, Dicellandra, and Preussiella form well-supported clades. In contrast, Amphiblemma (including Amphiblemma molle) and Cincinnobotrys s.l. (including Cincinnobotrys felicis) are not monophyletic. To accommodate the caulescent C. felicis we propose reinstatement of the monospecific genus Bourdaria. For the distinctive A. molle a new genus Mendelia is described. Calvoa hirsuta is designated here as the type of genus Calvoa, lectotypes are designated for Medinilla engleri and Veprecella lutea, and a neotype is designated for Preussiella kamerunensis.  相似文献   

14.
Vuji?, A., Ståhls, G., A?anski, J., Bartsch, H., Bygebjerg, R. & Stefanovi?, A. (2013). Systematics of Pipizini and taxonomy of European Pipiza Fallén: molecular and morphological evidence (Diptera, Syrphidae). —Zoologica Scripta, 42, 288–305. In the present work the monophyly and molecular phylogenetic relationships of the genera of tribe Pipizini (Syrphidae) were investigated based on mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 28S rDNA sequences, and the relationships among species of genus Pipiza Fallén, 1810 based on mtDNA COI sequences. Molecular phylogenetic analyses of Pipizini supported Pipiza as monophyletic and as sister group to all other Pipizini, and resolved other Pipizini genera as monophyletic lineages except for genus Heringia Rondani, 1856. To recognize the distinctness and maintain the monophyly the genus Heringia was redefined, generic rank was assigned to Neocnemodon Goffe, 1944 stat. n., and the genus Claussenia Vuji? & Ståhls gen. n., type‐species Claussenia hispanica (Strobl, 1909), was described. A revision of the European Pipiza species, including a discussion of taxonomic characters and a morphological redefinition of all included species, is presented. One new species, Pipiza laurusi Vuji? & Ståhls sp. n. was described. The taxa Pipiza carbonaria Meigen, 1822; Pipiza fasciata, Meigen 1822; Pipiza lugubris (Fabricius, 1775), Pipiza noctiluca (Linneaues, 1758), Pipiza notata Meigen, 1822 were redefined. Lectotypes are designated for 17 taxa, and neotypes were designated for seven taxa. Fourteen new synonymies were proposed. Male genitalia were illustrated for all the species, and a key of the 12 European species for males and females was provided. Geometric morphometrics of wing landmarks and extended sampling of mtDNA COI sequences was employed to delimitate taxa of the P. noctiluca and P. lugubris complexes. Despite subtle morphological differences, wing geometric morphometrics variables of wing size and shape showed highly significant differences among species within P. noctiluca and P. lugubris complexes, which were supported by the molecular data.  相似文献   

15.
The development and homologies of the median elements of the ventral hyoid and branchial arches of Cypriniformes have been unclear. We compared the developmental morphology of this region across five species (Cycleptus elongatus, Luxilus zonatus, Danio rerio, Devario auropurpureus, and Cobitis striata), representing three of five major clades of cypriniforms. The development of basibranchial 1 is similar in catostomids and cyprinids, where a single, elongate, basihyal + anterior copula divides into separate elements. A gap develops between the posterior end of the basihyal cartilage and the anterior copula in catostomids but in cyprinids (Luxiluszonatus, Danio rerio, and Devarioauropurpureus) there is little separation and the basihyal and basibranchial 1 may grow close together or retain a cartilaginous connection (Danio rerio, several outgroups). In loaches and Gyrinocheilus, the gap posterior to the basihyal has been alternately interpreted as either the absence or posterior displacement of basibranchial 1. Uniquely among examined species, in Cobitis striata, the basihyal cartilage and anterior copula form as separate cartilages and remain distinct throughout development with a prominent gap between the basihyal and most anterior basibranchial, which we interpret as loss of basibranchial 1. In the posterior region associated with branchial arches 4 and 5, all examined species except Danio rerio, which has only a basibranchial 4 cartilage, have separate basibranchial 4 and 5 cartilages in early ontogeny. Basibranchials 4 and 5 remain separate in Cycleptus elongatus, Devario auropurpurea, and Cobitis striata, but fuse in Luxilus zonatus to form a posterior copula. The orientation of basibranchial 4 and 5 cartilages in Cobitis striata is similar to catostomids and cyprinids. The most posterior median element in the branchial arches, the post‐ceratobranchial cartilage, generally forms as a separate cartilage in catostomids but in Cobitis striata is connected with basibranchial 5 cartilage from earliest appearance. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Taxonomic schemes for the Heteroderinae Filip'ev & Schuurmans Stekhoven, 1941, sensu Luc et al., (1988) have been unstable due to the large number of genera and the paucity of known reliable characters. Reliable characters are essential when using phylogenetic inference in developing a natural classification. Morphological and developmental studies using light, scanning and transmission electron microscopy have revealed the new characters of host response, en face patterns, phasmid structure and female cuticular layers. These techniques also gave us insight into the homoplasy and polarity of many characters, revealed previously undetected character states and clarified misinterpreted character states. A matrix with the 19 most reliable characters is proposed for 20 operational taxonomic units (OTUs) and we employ this matrix for comparing computer generated phylogenetic analyses of the PHYLIP and PAUP packages. PAUP was deemed the more reliable parsimony algorithm for phylogenetic analysis of the Heteroderinae (Fink, 1986; Platnick, 1987). Monophyly of Atalodera + Sherodera + Thecavermiculatus (tribe Ataloderini), and Cactodera + Heterodera + Afenestrata, as well as Punctodera + Globodera + Dolichodera is supported by both programs. Most importantly, analyses strongly support monophyly of all cyst-forming genera (tribe Heteroderini) contrary to previous hypotheses of repeated evolution of the cyst (Wouts, 1985). In addition, monophyly of the Heteroderini with the Ataloderini is demonstrated. PAUP indicates monophyly of Sarisodera + Rhizonema + Bellodera + Hylonema and Ekphymatodera (tribe Sarisoderini new rank). Monophyly of the Sarisoderini was at first only weakly supported, but, subsequently, the reduced width of the submedial lips of second stage juveniles and males was recognized as a synapomorphy which strengthened subsequent PAUP trees and monophyly of the tribe. The present study rejects as paraphyletic or polyphyletic several previously proposed combinations, including Thecavermiculatus sequoiae (versus Rhizonema sequoiae), Sarisodera africana (versus Afenestrata africana), Dolichodera andinus (versus Thecavermiculatus andinus). The question whether T. andinus is a distinct genus, was not resolved due to insufficient data. PAUP supports our previous observations that Cactodera betulae is intermediate in a transformation series between other Cactodera and Heterodera: it also indicates these species as bring monophyletic with Heterodera + Afenestrata, but not with other Cactodera. Although these phylogenetic analyses strongly support some relationships, they indicate unresolved alternative hypotheses for others. Meloidodera (tribe Meloidoderini) and Cryphodera (tribe Cryphoderini) must be investigated for consideration of a possible synapomorphy not included in the present data matrix. Future studies are proposed to more clearly define the monophyly of the Heteroderini, as well as the Sarisoderini. Tests are also proposed to clarify questions of the monophyly of Verutus (tribe Verutini new rank) with the Heteroderinae versus other Tylenchida.  相似文献   

17.
The phylogeny of the fungus gnat tribe Exechiini (Diptera: Mycetophilidae) is reconstructed based on the combined analysis of five nuclear (18S, two parts of 28S, CAD, EF1α) and two mitochondrial (12S, COI) gene markers. According to known fossil record, and recent higher‐level phylogenies, the tribe constitutes the most apomorphic, distinctly monophyletic clade of the family Mycetophilidae. The tribe originated in the Paleogene and apparently quickly diversified in the Neogene with an unusual rapid radiation of complex male terminalia. Earlier attempts to reconstruct the phylogeny of the tribe, based on both morphology and molecular methods, have not yielded reliable hypotheses, neither in terms of resolution nor in terms of support for major clades. Increased taxon sampling and wider gene sampling have been suggested to achieve better phylogenetic resolution. Aiming at this, we present new phylogenies, for the first time with all known genera and subgenera of Exechiini represented. While many terminal intergeneric relationships are well supported, both in maximum likelihood and in Bayesian analyses, most of the major, deeper clades remain poorly supported. We suggest that a rapid radiation event close to the root may be causing the low resolution at this level in the phylogeny. This contrasts parallel phylogenies of the older subfamilies and tribes of the family Mycetophilidae, where traditional clades have usually been recovered with high support. Further in‐depth studies into the evolutionary history of the tribe are needed to enlighten and coalesce the specific phenomena driving their unique morphological, genetic and phylogeographic histories.  相似文献   

18.
Melica (Poaceae) consist of about 92 species distributed across temperate regions of the world. Within section Dalycum, Melica ciliata sensu lato forms a taxonomic complex of several species and subspecies with clinal morphological variation causing conflicting identifications. To resolve taxonomic confusion, we used three complementary approaches, through molecular, morphological, and phytoecological analyses. The double-digest restriction-associated DNA markers significantly support the monophyly of three taxa: (i) the Mediterranean Melica magnolii, (ii) the Eurasian Melica transsilvanica subsp. transsilvanica, and (iii) the west-European M. ciliata subsp. glauca. This differentiation is corroborated by the analysis of 22 morphometric variables. Furthermore, phytoecological analysis of 221 floristic inventories revealed habitat distinctions among these taxa. Our approach of integrative taxonomy argues for a specific distinction for these three taxa, and we include a key to separate these forms. These new molecular data on the section Dalycum, subsection Ciliatae, call for further phylogenetic analyses including samples of M. ciliata subsp. ciliata and other East-Mediterranean and South African taxa.  相似文献   

19.
The first empirically supported phylogenetic hypothesis of relationships for the southern African endemic butterfly tribe Dirini is presented. Data derived from the morphology and ecology of the adults and immature stages (33 characters), and portions of the mitochondrial gene cytochrome oxidase I (COI) and the nuclear genes elongation factor 1α (EF1α) and wingless (WG) (totalling 1734 bp) were used to infer the relationships of the in‐group genera. An expanded molecular dataset using four genera from the Nymphalini and Satyrini to root the tree, and three genera from the Melanitini to test the monophyly of the tribe, was analysed using parsimony and Bayesian methods. Estimates of divergence times were calculated using two fossil calibrations under a relaxed molecular clock model. The monophyly of the tribe and each in‐group genus were strongly supported. Key findings are the sister‐taxon relationship of Aeropetes and Tarsocera, the apparent simultaneous or nearly simultaneous radiation of four lineages, the polyphyly of the species within Torynesis, and the apparent trans‐Atlantic dispersal of the ancestors of Manataria about 40 Ma. Estimates of divergence times indicate that the tribe has undergone two major radiations since its origin: the first when they left forest habitats in the mid–late Oligocene, shortly after the radiation of the grasses (Poaceae), and the second in the early‐middle Pliocene, coinciding with the aridification of southern Africa and the spread of conditions that favoured C4 grasses over the C3 grasses that dirine larvae prefer to eat. The high species diversity within the tribe appears to be partly a taxonomic artefact that may have resulted from the misinterpretation of climate‐related phenotypic variation within extant species. Relocation and breeding experiments should test this hypothesis.  相似文献   

20.
The rove beetle subtribe Xanthopygina (Coleoptera: Staphylinidae: Staphylininae: Staphylinini) is a species‐rich group of 27 neotropical genera that contains some of the largest and most brightly coloured of all staphylinid beetles. The monophyly of the subtribe has never been tested before, using a large dataset of taxa and genes. Bayesian and maximum likelihood analyses are used on individual genes (COI, 28S rDNA, wingless, arginine kinase, CAD and topoisomerase I) and the partitioned concatenated dataset to test for monophyly and examine the relationships among Xanthopygina genera. Xanthopygina (excluding Philothalpus) are shown to be a monophyletic group with strong support values. The genus Philothalpus is removed from Xanthopygina and placed in the tribe Staphylinini as incertae sedis. Four distinct clades of Xanthopygina genera are recognized. The origin of Xanthopygina is hypothesized to be in the Late Cretaceous or later and the origin of myrmecophilous adaptations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号