首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amphi‐boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans‐Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter‐oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans‐Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter‐oceanic affinities and dispersal histories. For a general view on the trans‐Arctic dynamics and of the roles of potential dispersal–vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi‐boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter‐oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene–Pleistocene–Holocene time frame. Repeated inter‐oceanic exchange was inferred for 23 taxa, and the latest connection was usually post‐glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late‐ or post‐glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter‐oceanic vicariance scenario underlying amphi‐boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region.  相似文献   

2.
The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice‐free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from∼1.2 to∼0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans‐Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.  相似文献   

3.
The Arctic is geologically and biogeographically young, and the origin of its seaweed flora has been widely debated. The Arctic littoral biogeographic region dates from the latest Tertiary and Pleistocene. Following the opening of Bering Strait, about 3.5 mya, the “Great Trans‐Arctic Biotic Interchange” populated the Arctic with a fauna strongly dominated by species of North Pacific origin. The Thermogeographic Model (TM) demonstrates why climate and geography continued to support this pattern in the Pleistocene. Thus, Arctic and Atlantic subarctic species of seaweeds are likely to be evolutionarily “based” in the North Pacific, subarctic species are likely to be widespread in the warmer Arctic, and species of Atlantic Boreal or warmer origin are unlikely in the Arctic and Subarctic. Although Arctic seaweeds have been thought to have a greater affinity with the North Atlantic, we have reanalyzed the Arctic endemic algal flora, using the Thermogeographic Model and evolutionary trees based on molecular data, to demonstrate otherwise. There are 35 congeneric species of the six, abundant Arctic Rhodophyta that we treat in this paper; 32 of these species (91%) occur in the North Pacific, two species (6%) occur in the Boreal or warmer Atlantic Ocean, and a single species is panoceanic, but restricted to the Subarctic. Laminaria solidungula J. Agardh, a kelp Arctic “endemic” species, has 18 sister species. While only eleven (61%) occur in the North Pacific, this rapidly dispersing and evolving genus is a terminal member of a diverse family and order (Laminariales) widely accepted to have evolved in the North Pacific. Thus, both the physical/time‐based TM and the dominant biogeographic pattern of relatives of Arctic macrophytes suggest strong compliance with the evidence of zoology, geology, and paleoclimatology that the Arctic marine flora is largely of Pacific origin.  相似文献   

4.
Aim We examined the phylogeography of the cold‐temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic. Location North Pacific and North Atlantic oceans (42° to 77° N). Methods We genotyped individuals from 23 populations for a mitochondrial DNA (mtDNA) intergenic spacer (IGS) (n = 608) and the cytochrome c oxidase subunit I (COI) region (n = 276), as well as for six nuclear microsatellite loci (n = 592). Phylogeographic structure and connectivity were assessed using population genetic and phylogenetic network analyses. Results IGS mtDNA haplotype diversity was highest in the North Pacific, and divergence between Pacific haplotypes was much older than that of the single cluster of Atlantic haplotypes. Two ancestral Pacific IGS/COI clusters led to a widespread Atlantic cluster. High mtDNA and microsatellite diversities were observed in Prince William Sound, Alaska, 11 years after severe disturbance by the 1989 Exxon Valdez oil spill. Main conclusions At least two colonizations occurred from the older North Pacific populations to the North Atlantic between the opening of the Bering Strait and the onset of the Last Glacial Maximum. One colonization event was from the Japanese Archipelago/eastern Aleutians, and a second was from the Alaskan mainland around the Gulf of Alaska. Japanese populations probably arose from a single recolonization event from the eastern Aleutian Islands before the North Pacific–North Atlantic colonization. In the North Atlantic, the Last Glacial Maximum forced the species into at least two known glacial refugia: the Nova Scotia/Newfoundland (Canada) region and Andøya (northern Norway). The presence of two private haplotypes in the central Atlantic suggests the possibility of colonization from other refugia that are now too warm to support F. distichus. With the continuing decline in Arctic ice cover as a result of global climate change, renewed contact between North Pacific and North Atlantic populations of Fucus species is expected.  相似文献   

5.
Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near‐complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft‐bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non‐phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought. The Monachinae (‘southern’ seals) split from the Phocinae c. 15 Ma on the eastern US coast. Several early trans‐Atlantic dispersals possibly occurred, leaving no living descendants, as divergence estimates suggest that the Monachus (monk seal) species divergences occurred in the western Atlantic c. 6 Ma, with the Mediterranean monk seal ancestor dispersing afterwards. The tribes Lobodontini (Antarctic seals) and Miroungini (elephant seals) are also estimated to have diverged in the eastern Atlantic c. 7 Ma and a single Lobodontini dispersal to Antarctica occurred shortly afterwards. Many of the newly estimated dates are used to infer how extinct lineages/taxa are allied with their living relatives.  相似文献   

6.
Deep‐sea octopuses of the genus Muusoctopus are thought to have originated in the Pacific Northern Hemisphere and then diversified throughout the Pacific and into the rest of the World Ocean. However, this hypothesis was inferred only from molecular divergence times. Here, the ancestral distribution and dispersal routes are estimated by Bayesian analysis based on a new phylogeny including 38 specimens from the south‐eastern Pacific Ocean. Morphological data and molecular sequences of three mitochondrial genes (16S rRNA, COI and COIII) are presented. The morphological data confirm that specimens newly acquired from off the coast of Chile comprise two species: Muusoctopus longibrachus and the poorly described species, Muusoctopus eicomar. The latter is here redescribed and is clearly distinguished from M. longibrachus and other closely related species in the region. A gene tree was built using Bayesian analysis to infer the phylogenetic position of these species within the species group, revealing that a large genetic distance separates the two sympatric Chilean species. M. longibrachus is confirmed as the sister species of Muusooctopus eureka from the Falkland Islands; while M. eicomar is a sister species of Muusoctopus yaquinae from the North Pacific, most closely related to the amphi‐Atlantic species Muusoctopus januarii. Molecular divergence times and ancestral distribution analyses suggest that genus Muusoctopus may have originated in the North Atlantic: one lineage dispersed directly southward to the Magellan region and another dispersed southward along the Eastern Pacific to the Southern Ocean and Antarctica. The Muusoctopus species in the Southern Hemisphere have different phylogenetic origins and represent independent invasions of this region.  相似文献   

7.
The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so‐called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species.  相似文献   

8.
The European green crab Carcinus maenas is one of the world's most successful aquatic invaders, having established populations on every continent with temperate shores. Here we describe patterns of genetic diversity across both the native and introduced ranges of C. maenas and its sister species, C. aestuarii, including all known non‐native populations. The global data set includes sequences from the mitochondrial cytochrome c oxidase subunit I gene, as well as multilocus genotype data from nine polymorphic nuclear microsatellite loci. Combined phylogeographic and population genetic analyses clarify the global colonization history of C. maenas, providing evidence of multiple invasions to Atlantic North America and South Africa, secondary invasions to the northeastern Pacific, Tasmania, and Argentina, and a strong likelihood of C. maenas × C. aestuarii hybrids in South Africa and Japan. Successful C. maenas invasions vary broadly in the degree to which they retain genetic diversity, although populations with the least variation typically derive from secondary invasions or from introductions that occurred more than 100 years ago.  相似文献   

9.
The genus Laminaria has a wide distribution range compared with other kelp genera because it is found in both the North and the South Atlantic, on both sides of the North Pacific, as well as in the Mediterranean. Hypotheses behind this biogeographical pattern have been discussed by several authors but have not yet been fully evaluated with time‐calibrated phylogenies. Based on the analysis of four molecular markers (ITS2, rbcL, atp8 and trnWI), our goal was to reassess the Laminaria species diversity in South Africa, assess its relationship with the other species distributed in the South Atlantic and reconstruct the historical biogeography of the genus. Our results confirm the occurrence of a single species, L. pallida, in southern Africa, and its sister relationship with the North Atlantic L. ochroleuca. Both species belonged to a clade containing the other South Atlantic species: L. abyssalis from Brazil, and the Mediterranean L. rodriguezii. Our time‐calibrated phylogenies suggest that Laminaria originated in the northern Pacific around 25 mya, followed by at least two migration events through the Bering Strait after its opening (~5.32 mya). Today, the first is represented by L. solidungula in the Arctic, while the second gave rise to the rest of the Atlantic species. The colonization of the North Atlantic was followed by a gradual colonization southward along the west coast of Europe, into the Mediterranean (~2.07 mya) and two recent, but disconnected, migrations (~1.34 and 0.87 mya) across the equator, giving rise to L. abyssalis in Brazil and L. pallida in southern Africa, respectively.  相似文献   

10.
Ecrobia is a genus of small brackish‐water mud snails with an amphi‐Atlantic distribution. Interestingly, the species occurring in the northwestern Atlantic, Ecrobia truncata, is more closely related to the Pontocaspian taxa, Ecrobia grimmi and Ecrobia maritima, than to the species occurring in the northeastern Atlantic and Mediterranean Sea. At least three colonization scenarios may account for this peculiar biogeographical pattern: (1) a recent human‐mediated dispersal, (2) a historical transatlantic interchange, and (3) a historical transpolar interchange. To test these three scenarios, we used five operational criteria—time of species divergence, first appearance in the fossil record, dispersal limitation as well as environmental filtering and biotic interactions along the potential migration routes. Specifically, we inferred a time‐calibrated molecular phylogeny for Ecrobia and reconstructed a paleogeographical map of the Arctic Ocean at 2.5 million years ago (Mya). Based on the five operational criteria, scenarios 1 and 2 can likely be rejected. In contrast, all criteria support scenario 3 (historical transpolar interchange). It is therefore suggested that a bird‐mediated and/or ocean current‐mediated faunal interchange via the Arctic Ocean occurred during the Late Pliocene or Early Pleistocene. This dispersal was likely facilitated by reduced distances between the Eurasian and North American/Greenland landmasses, marine introgressions, and/or a stepping‐stone system of brackish‐water habitats in northern Siberia, as well as a lack of competition along the migration route. As for the direction of dispersal, the scientific data presented are not conclusive. However, there is clearly more support for the scenario of dispersal from the Pontocaspian Basin to North America than vice versa. This is the first study providing evidence for a natural faunal exchange between the Pontocaspian Basin and North America via the Arctic Ocean.  相似文献   

11.
The Bering Strait connection: dispersal and speciation in boreal macroalgae   总被引:1,自引:0,他引:1  
A large number of boreal seaweeds have either sibling species or conspecific populations of a single species in the North Pacific and North Atlantic Oceans. This pattern is thought to have arisen from the dispersal between the two oceans through the Arctic Ocean after the opening of the Bering Strait in the mid-to-late Miocene or earliest Pliocene and from subsequent vicariant speciation as the Arctic Ocean froze and Bering Strait closed intermittently during glacial periods. Recent molecular studies of species in all three major seaweed phyla reveal patterns of vicariance. However, a number of lines of evidence point to differences in origins of these clades; some appear to be Pacific in origin whereas others appear to be derived from Atlantic stock. Different origins can be explained by recent stratigraphic finds that push the first Cenozoic opening of the Bering Strait back from 3.1–4.1 to 4.8–7.4 Ma (million years ago). Northern hemisphere ocean circulation models suggest that water flow would have been from the North Atlantic–Arctic south through the Bering Strait prior to the closure of the Panamanian Isthmus c. 3.5 Ma in contrast to the northward flow from the Pacific into the Arctic and North Atlantic, which developed after the closing of the Isthmus. Despite these differences in timing of the two invasions, there are no significant differences in levels of relationships among species with a North Atlantic origin compared with species with a North Pacific origin based on currently available data. More work is required to understand vicariance in seaweeds, especially in deciphering when a speciation event has occurred.  相似文献   

12.
Episodes of trans-Arctic faunal exchange and isolation between the north Pacific and Atlantic ocean basins have been implicated as important historic geological events contributing to extant patterns of genetic diversity and structure in Holarctic faunas. We made a further test of the significance of such biogeographic events by examining mitochondrial DNA (mtDNA) restriction fragment length and cytochrome b sequence polymorphism among north Pacific and Arctic, north-western Atlantic (north-eastern North American), and north-eastern Atlantic (European) regional forms of the boreal smelt, genus Osmerus. Our analyses also assessed whether the regional forms within this ‘species complex’: (i) represent a single widely distributed and polytypic species, or is composed of three geographically distinct species, and (ii) resulted from a single split from north Pacific ancestral Osmerus or two independent Pacific-Atlantic divergences. MtDNA sequence divergence estimates among forms ranged from 5.6–8.9% and from 6.1–8.5% based on restriction fragment and 300 base pairs of cytochrome b sequencing, respectively. Divergence within forms averaged less than 0.5% for fragment analysis and no differences were detected from sequence analysis. Provisional dating of lineage separations in Osmerus based on our sequence divergence estimates suggested a mid-Pliocene to early Pleistocene time frame for diversification among the forms. These estimated lineage separation dates support the idea that geological events in ‘Beringia’ and the surrounding trans-Arctic area (e.g. opening of the Bering Seaway, Pleistocene glacial advances), occurring over a similar time frame, have influenced radiation in Osmerus. Phenetic and parsimony analyses of the sequence divergence estimates and of sequence polymorphisms suggested that the north Pacific/Arctic form and the northwestern Atlantic form shared a common ancestor more recently than either has with the north-eastern Atlantic form, thus supporting the hypothesis that the species complex has arisen from two independent Pacific-Atlantic divergences probably beginning during the mid-Pliocene.  相似文献   

13.
Herein, we use genetic data from 277 sleeper sharks to perform coalescent‐based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic‐Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub‐Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial‐interglacial cycles. We propose that the initial S. microcephalusS. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.  相似文献   

14.
Aim We investigated patterns of genetic diversity among invasive populations of Ampithoe valida and Jassa marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute to the contemporary distribution of these species in the region. Location Native range: Atlantic North American coast; Invaded range: Pacific North American coast. Methods We assessed indices of genetic diversity based on DNA sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI haplotypes among populations in both the invasive and putative native ranges of A. valida and J. marmorata and reconstructed phylogenetic relationships among COI haplotypes using both maximum parsimony and Bayesian approaches. Results Phylogenetic inference indicates that inaccurate species‐level identifications by morphological criteria are common among Jassa specimens. In addition, our data reveal the presence of three well supported but previously unrecognized clades of A. valida among specimens in the north‐eastern Pacific. Different species of Jassa and different genetic lineages of Ampithoe exhibit striking disparity in geographic distribution across the region as well as substantial differences in genetic diversity indices. Main conclusions Molecular genetic methods greatly improve the accuracy and resolution of identifications for invasive benthic marine amphipods at the species level and below. Our data suggest that multiple cryptic introductions of Ampithoe have occurred in the north‐eastern Pacific and highlight uncertainty regarding the origin and invasion histories of both Jassa and Ampithoe species. Additional morphological and genetic analyses are necessary to clarify the taxonomy and native biogeography of both amphipod genera.  相似文献   

15.

Biological invasions can pose a severe threat to coastal ecosystems, but are difficult to track due to inaccurate species identifications and cryptic diversity. Here, we clarified the cryptic diversity and introduction history of the marine amphipod Ampithoe valida by sequencing a mtDNA locus from 683 individuals and genotyping 10,295 single-nucleotide polymorphisms (SNPs) for 349 individuals from Japan, North America and Argentina. The species complex consists of three cryptic lineages: two native Pacific and one native Atlantic mitochondrial lineage. It is likely that the complex originated in the North Pacific and dispersed to the north Atlantic via a trans-arctic exchange approximately 3 MYA. Non-native A. valida in Argentina have both Atlantic mitochondrial and nuclear genotypes, strongly indicating an introduction from eastern North America. In two eastern Pacific estuaries, San Francisco Bay and Humboldt Bay, California, genetic data indicate human-mediated hybridization of Atlantic and Pacific sources, and possible adaptive introgression of mitochondrial loci, nuclear loci, or both. The San Francisco Bay hybrid population periodically undergoes population outbreaks and profoundly damages eelgrass Zostera marina thalli via direct consumption, and these ecological impacts have not been documented elsewhere. We speculate that novel combinations of Atlantic and Pacific lineages could play a role in A. valida’s unique ecology in San Francisco Bay. Our results reinforce the notion that we can over-estimate the number of non-native invasions when there is cryptic native structure. Moreover, inference of demographic and evolutionary history from mitochondrial loci may be misleading without simultaneous survey of the nuclear genome.

  相似文献   

16.
Kelp aquaculture is globally developing steadily as human food source, along with other applications. One of the newer crop species is Saccharina latissima, a northern hemisphere kelp inhabiting temperate to arctic rocky shores. To protect and document its natural genetic variation at the onset of this novel aquaculture, as well as increase knowledge on its taxonomy and phylogeography, we collected new genetic data, both nuclear and mitochondrial, and combined it with previous knowledge to estimate genetic connectivity and infer colonization history. Isolation‐with‐migration coalescent analyses demonstrate that gene flow among the sampled locations is virtually nonexistent. An updated scenario for the origin and colonization history of S. latissima is developed as follows: We propose that the species (or species complex) originated in the northwest Pacific, crossed to the northeast Pacific in the Miocene, and then crossed the Bering Strait after its opening ~5.5 Ma into the Arctic and northeast Atlantic. It subsequently crossed the Atlantic from east to west. During the Pleistocene, it was compressed in the south with evidence for northern refugia in Europe. Postglacial recolonization led to secondary contact in the Canadian Arctic. Saccharina cichorioides is shown to probably belong to the S. latissima species complex and to derive from ancestral populations in the Asian North Pacific. Our novel approach of comparing inferred gene flow based on coalescent analysis versus Wright's island model suggests that equilibrium levels of differentiation have not yet been reached in Europe and, hence, that genetic differentiation is expected to increase further if populations are left undisturbed.  相似文献   

17.
The taxonomy of common northern nudibranch molluscs of the genus Dendronotus in the vast cold regions of Eurasia remains largely unknown. Abundant material collected in many localities from the Barents Sea, via the Arctic region, to the north‐west Pacific was analysed for the first time. An integrated approach combining morphological and ontogenetic data with molecular four‐gene (COI, 16S, H3, and 28S) analysis reveals seven species, including three previously undescribed. Dendronotus frondosus (Ascanius, 1774) and Dendronotus dalli Bergh, 1879 were commonly considered as amphiboreal species; however, according to this study they are restricted to the North Atlantic and the North Pacific, respectively. In the north‐west Pacific two new species were discovered, D endronotus kamchaticus sp. nov. and D endronotus kalikal sp. nov. , that are externally similar to D. frondosus, but that show significant distance according to molecular analysis and are considerably different in radular morphology. In the North Atlantic a new species D endronotus niveus sp. nov. , sibling to North Pacific D. dalli, is revealed. The separate status of North Atlantic Dendronotus lacteus (Thompson, 1840) is confirmed, including considerable range extension. The essential similarity of early ontogenetic stages of radular development common for species with disparate adult radular morphology (such as D. frondosus and D. dalli) is shown, and its importance for taxonomy is discussed. © 2015 The Linnean Society of London  相似文献   

18.
Aim We address questions about trans‐Pacific distributions of marine organisms and the North Pacific Ocean as a centre of marine biodiversity through a phylogenetic and biogeographical study of a pan‐Pacific genus of Northern Hemisphere smelts (Hypomesus, Pisces: Osmeridae). Location North Pacific Ocean. Methods Relationships of the five species of Hypomesus from throughout the North Pacific were reconstructed through maximum likelihood and Bayesian phylogenetic analyses of sequence data from two mitochondrial (cytb, 16S) and three nuclear (ITS2, S71, RAG1) gene regions of five to 25 individuals per species, totalling 3588 characters. The resulting phylogenies were used to test hypotheses of species relationships and geographical origins using both dispersal‐based and maximum likelihood methods for inferring ancestral areas (lagrange ). Cytb sequence divergence and a Bayesian approach (beast ) were used to estimate the timeframe of Hypomesus evolution, which was compared with work on similarly distributed taxa. Results Hypothesized trans‐Pacific Ocean relationships based on lateral line scale counts were not supported by the phylogeny, suggesting parallel evolution of this phenotype, although we found one such relationship between the western H. japonicus and the two eastern Pacific species (H. pretiosus and H. transpacificus). Dispersalist approaches rejected an early proposal of a double‐compression vicariant mechanism as well as an eastern Pacific origin. Results from the lagrange analysis suggested a more widespread ancestor, although also supporting a role for the western Pacific. Divergence estimates suggested that most splits between species occurred in the mid‐Miocene, and the most recent speciation event, between the eastern Pacific species, occurred in the Pliocene to early Pleistocene. Main conclusions Our molecular data indicate that the character historically used to define relationships within Hypomesus, lateral line scale count, does not reflect ancestry within the genus. Biogeographical reconstructions suggest an important role for the western North Pacific in the diversification of Hypomesus. While uncertainty remains over the date of origin for this genus, estimates place the divergences during periods of climatic cooling that have been important in generating diversity in a number of similarly distributed organisms. Additional comparative data will provide further insight into the relative importance of the western region in generating diversity in the North Pacific Ocean.  相似文献   

19.
Extant baleen whales (Cetacea, Mysticeti) are a disparate and species‐rich group, but little is known about their fossil record in the northernmost Atlantic Ocean, a region that supports considerable extant cetacean diversity. Iceland's geographical setting, dividing North Atlantic and Arctic waters, renders it ideally situated to shed light on cetacean evolution in this region. However, as a volcanic island, Iceland exhibits very little marine sedimentary exposure, and fossil whales from Iceland older than the late Pleistocene are virtually unknown. Here, we present the first fossil whale found in situ from the Pliocene Tjörnes Formation (c. 4.5 Ma), Iceland's only substantial marine sedimentary outcrop. The specimen is diagnosed as a partial skull from a large right whale (Mysticeti, Balaenidae). This discovery highlights the Tjörnes Formation as a potentially productive fossil vertebrate locality. Additionally, this find indicates that right whales (Eubalaena) and bowhead whales (Balaena) were sympatric, with broadly overlapping latitudinal ranges in the Pliocene, in contrast to the modern latitudinal separation of their living counterparts.  相似文献   

20.
Balaenopteroids (Balaenopteridae + Eschrichtiidae) are a diverse lineage of living mysticetes, with seven to ten species divided between three genera (Megaptera, Balaenoptera and Eschrichtius). Extant members of the Balaenopteridae (Balaenoptera and Megaptera) are characterized by their engulfment feeding behavior, which is associated with a number of unique cranial, mandibular, and soft anatomical characters. The Eschrichtiidae employ suction feeding, which is associated with arched rostra and short, coarse baleen. The recognition of these and other characters in fossil balaenopteroids, when viewed in a phylogenetic framework, provides a means for assessing the evolutionary history of this clade, including its origin and diversification. The earliest fossil balaenopterids include incomplete crania from the early late Miocene (7–10 Ma) of the North Pacific Ocean Basin. Our preliminary phylogenetic results indicate that the basal taxon, “Megaptera” miocaena should be reassigned to a new genus based on its possession of primitive and derived characters. The late late Miocene (5–7 Ma) balaenopterid record, except for Parabalaenoptera baulinensis and Balaenoptera siberi, is largely undescribed and consists of fossil specimens from the North and South Pacific and North Atlantic Ocean basins. The Pliocene record (2–5 Ma) is very diverse and consists of numerous named, but problematic, taxa from Italy and Belgium, as well as unnamed taxa from the North and South Pacific and eastern North Atlantic Ocean basins. For the most part Pliocene balaenopteroids represent extinct species and genera and reveal a greater degree of morphological diversity than at present. The Pleistocene record is very limited and, unfortunately, fails to document the evolutionary details leading to modern balaenopteroid species diversity. It is evident, however, that most extant species evolved during the Pleistocene. Morphological and molecular based phylogenies support two competing hypotheses concerning relationships within the Balaenopteroidea: (1) balaenopterids and eschrichtiids as sister taxa, and (2) eschrichtiids nested within a paraphyletic Balaenopteridae. The addition of fossil taxa (including a new Pliocene species preserving a mosaic of balaenopterid and eschrichtiid characters) in morphological and “total evidence” analyses, offers the potential to resolve the current controversy concerning the possible paraphyly of Balaenopteridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号