共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of purified bovine adrenocortical P-450(11)beta on the C18-steroid, 4-estrene-3,17-dione (19-norandrostenedione), is described. The major steroid products were separated by HPLC and identified by GC-MS, and 1H- and 13C-NMR as 11 beta-, 18- and 6 beta-hydroxylated derivatives of 19-norandrostenedione. The turnover numbers of the 11 beta-, 18- and 6 beta-hydroxylase reactions were 45, 7.5 and 1.9 (mol/min/mol of P-450(11)beta), respectively, with a common Km of 44 microM. All of these activities required the presence of the electron donating system consisting of NADPH, adrenal ferredoxin (adrenodoxin) and its reductase. These findings provide additional insights into the versatile catalytic roles of P-450(11)beta in the adrenal cortex, in which it may act on C18-19-nor-steroids in addition to its known activities on C21- and C19-steroids. 相似文献
2.
M Ohta S Fujii A Wada T Ohnishi T Yamano M Okamoto 《Journal of steroid biochemistry》1987,26(1):73-81
Incubation of 11-deoxycorticosterone with a cytochrome P-450(11)beta-reconstituted system yielded, in addition to corticosterone and 18-hydroxy-11-deoxycorticosterone, a new steroid product. The retention time of the new product was identical with that of authentic 19-hydroxy-11-deoxycorticosterone on high performance liquid chromatography (HPLC). The turnover number of 19-hydroxy-11-deoxycorticosterone formation was 7.0 mol/min/mol P-450. When a large amount of cytochrome P-450(11)beta was used for the reaction and the products were analyzed by HPLC, the 19-hydroxy-11-deoxycorticosterone peak disappeared from the chromatogram and concomitantly new unidentified peaks appeared. These results suggest that 19-hydroxy-11-deoxycorticosterone was further metabolized to other steroids by cytochrome P-450(11)beta. Therefore, we next incubated 19-hydroxy-11-deoxycorticosterone with cytochrome P-450(11)beta and analyzed the reaction products by HPLC. The above-mentioned unidentified peaks appeared again in the chromatogram. The retention time of one of the peaks coincided with that of authentic 19-oxo-11-deoxycorticosterone. This peak substance was purified by repeated HPLC and subjected to mass spectrometry and 1H NMR analyses. Its field desorption mass spectrum (FD-MS) showed a M+ peak at m/e 344. The 1H NMR spectrum showed the signal of an aldehyde proton instead of those of hydroxymethyl protons at the C-19 position. These results suggest that cytochrome P-450(11)beta can catalyze the 19-hydroxylation of 11-deoxycorticosterone, and the 19-hydroxy-11-deoxycorticosterone produced is further oxidized at the C-19 position to 19-oxo-11-deoxycorticosterone. 相似文献
3.
A new metabolite was produced from 18-hydroxydeoxycorticosterone by the cytochrome P-450(11) beta linked hydroxylase system purified from bovine adrenocortical mitochondria. It was identified as 18,19-dihydroxydeoxycorticosterone by chemical synthesis on the basis of high-performance liquid chromatography, gas chromatography-mass spectrometry, and proton nuclear magnetic resonance (1H NMR) spectroscopy, and detailed structural analysis of it was performed by 1H NMR spectroscopy. The methylene protons at the C-19 position of the steroid were nonequivalent and coupled with each other, having a coupling constant of 10.6 Hz. These protons had different coupling constants, 6.7 and 3.4 Hz, for the hydroxy proton at the C-19 position. Due to these couplings, the signals of the methylene protons were observed around 3.9 ppm as two double doublets. The methylene protons at the C-21 position were also nonequivalent, having a coupling constant of 11.1 Hz. Coupling constants between these methylene protons and the hydroxy proton at the C-21 position were 8.2 and 4.2 Hz, respectively. These results indicate that both hydroxymethyl groups at the C-19 and C-21 positions do not freely rotate in chloroform solution. The signals of hydroxy protons at the C-19 and C-21 positions were found at 1.25 and 1.87 ppm, respectively, by means of decoupling of the corresponding methylene protons. The hydroxy proton at the C-18 position was found to scarcely couple with any proton. This fact suggests that this hydroxy group is linked to the C-20 position, making a hemiketal bridge between the C-18 and the C-20. 相似文献
4.
The interactions of CYP11B1 (cytochrome P-45011beta), CYP11B2 (cytochrome P-450aldo) and CYP11A1 (cytochrome P-450scc) were investigated by cotransfection of their cDNA into COS-1 cells. The effect of CYP11A1 on CYP11B isozymes was examined by studying the conversion of 11-deoxycorticosterone to corticosterone, 18-hydroxycorticosterone and aldosterone. It was shown that when human or bovine CYP11B1 and CYP11A1 were cotransfected they competed for the reducing equivalents from the limiting source contained in COS-1 cells; this resulted in a decrease of the CYP11B activities without changes in the product formation patterns. The competition of human CYP11A1 with human CYP11B1 and CYP11B2 could be diminished with excess expression of bovine adrenodoxin. However, the coexpression of bovine CYP11B1 and CYP11A1 in the presence of adrenodoxin resulted in a stimulation of 11beta-hydroxylation activity of CYP11B1 and in a decrease of the 18-hydroxycorticosterone and aldosterone formation. These results suggest that the interactions of CYP11A1 with CYP11B1 and CYP11B2 do not have an identical regulatory function in human and in bovine adrenal tissue. 相似文献
5.
S Kirita K Morohashi T Hashimoto H Yoshioka Y Fujii-Kuriyama T Omura 《Journal of biochemistry》1988,104(5):683-686
Using pcP-450(11 beta)-2 cDNA (Morohashi et al. (1987) J. Biochem. 102, 559-568) as the probe, a different cDNA clone, pcP-450(11 beta)-3, was isolated from a cDNA library of bovine adrenal cortex. The restriction enzyme map of pcP-450(11 beta)-3 was highly homologous but not identical with that of pcP-450(11 beta)-2. Nucleotide sequence determination revealed the substitutions of 14 nucleotides and 3 amino acids between pcP-450(11 beta)-2 and -3. Blotting analysis involving two different oligonucleotide probes specific to these two cDNAs indicated that at least two kinds of P-450(11 beta) mRNA were expressed in individual animals and that at least two kinds of P-450(11 beta) genes exist in the bovine genome. 相似文献
6.
Rabbit antibodies against cytochrome P-450 (SCC), P-450 (11 beta), and P-450 (C-21) from bovine adrenal cortex were prepared, and it was confirmed that these three cytochrome P-450 species are immunologically distinct from one another. Cytoplasmic sites of synthesis of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) in bovine adrenal cortex were determined by examining the presence of their nascent peptides on isolated free and bound ribosomes. Nascent peptides were released in vitro from ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) were isolated by immunoprecipitation. The nascent peptides of these three cytochrome P-450 species were found in both free and bound ribosomal fractions, suggesting that they share common sites of synthesis in the cytoplasm. However, the nascent peptides of mitochondrial P-450 (SCC) and P-450 (11 beta) were more concentrated in the free ribosomal fraction, whereas those of microsomal P-450 (C-21) were more abundant in the bound ribosomal fraction. The nascent peptides of the three cytochrome P-450 species were released from the membrane-bound ribosomes of rough microsomes into the cytoplasmic surface of microsomal vesicles by puromycin treatment. 相似文献
7.
Conversion of 11-deoxycorticosterone and corticosterone to aldosterone by cytochrome P-450 11 beta-/18-hydroxylase from porcine adrenal 总被引:1,自引:0,他引:1
Highly purified cytochrome P-450 11 beta-/18-hydroxylase and the electron carriers adrenodoxin and adrenodoxin reductase were prepared from porcine adrenal. When the enzyme was incubated with the electron carriers, 11-deoxycorticosterone (DOC) and NADPH, the following products were isolated and measured by HPLC: corticosterone, 18-hydroxy-11-deoxycorticosterone (18-hydroxyDOC), 18-hydroxycorticosterone and aldosterone. All of the DOC consumed by the enzyme can be accounted for by the formation of these four steroids. Aldosterone was identified by mass spectroscopy and by preparing [3H]aldosterone from [3H]corticosterone followed by recrystallization at constant specific activity after addition of authentic aldosterone. Corticosterone and 18-hydroxycorticosterone were also converted to aldosterone. Conversion of corticosterone and 18-hydroxycorticosterone to aldosterone required P-450, both electron carriers, NADPH and substrate. The reaction is inhibited by CO and metyrapone. Moreover, all three activities of the purified enzyme decline at the same rate when the enzyme is kept at room temperature for various periods of time and when the enzyme is treated with increasing concentrations of anti-11 beta-hydroxylase (IgG) before assay. It is concluded that cytochrome P-450 11 beta-/18-hydroxylase can convert DOC to aldosterone via corticosterone and 18-hydroxycorticosterone. The stoichiometry of this conversion was found to be 3 moles of NADPH, 3 moles of H+ and 3 moles of oxygen per mole of aldosterone produced. 相似文献
8.
We isolated 4 different clones of the P-450(11 beta) gene from a bovine genomic library. These genomic clones were highly homologous with each other. Two of the isolated clones were pseudogenes. Determination of its nucleotide sequences indicated that the bovine P-450(11 beta) gene is divided into 9 exons by 8 introns and that it is about 8.5 kb in total length. The number of exons and the locations of intron insertion into the P-450(11 beta) gene are identical with those in the case of P-450(SCC), but different from those of other microsomal P-450s. 相似文献
9.
K Suhara K Ohashi K Takeda M Katagiri 《Biochemical and biophysical research communications》1986,140(2):530-535
Purified bovine adrenal P-450(11)beta has been shown to act as an aromatase which catalyzes conversion of 19-oxoandrostenedione to estrone. No conversions took place when any one of the required components such as NADPH, NADPH:adrenodoxin reductase, adrenodoxin and P-450(11)beta was omitted from the complete reconstituted system. P-450scc, another mitochondrial P-450 obtained from adrenal cortex, did not substitute for the P-450(11)beta in the aromatase reaction. These results show that P-450(11)beta is able to catalyze a series of reaction which can generate adrenal estrogen through androstenedione and its 19-hydroxy- and 19-oxo-derivatives. The P-450(11)beta-dependent reaction appears to be quite different from the placental aromatase reaction in that the latter is catalyzed by a microsomal P-450. 相似文献
10.
Using the optical absorbance spectroscopy method, the interaction of a number of biospecific ligands (steroids, adrenodoxin) with homogeneous cytochrome P-450 (11 beta) from bovine adrenal mitochondria was investigated. The parameters of the steroid-protein interaction in a number of substrates and products of the 11 beta- and 18 (19)-hydroxylation with the active site of cytochrome P-450 (11 beta) were determined. A sharp decrease in the cytochrome affinity for steroids upon the insertion of the first hydroxy group was observed, which provides for a predominant formation of monohydroxylated products from the substrate and minimum amounts of dihydroxylated ones, despite the presence of more than one position for the substrate hydroxylation by cytochrome P-450 (11 beta). Some structural elements of the steroid molecule were determined as any alterations in these strongly affect the enzyme affinity for the steroid. These structures are: 1) delta 4-3-oxo structure; 2) either 21-hydroxy group of pregnen steroids or the one fulfilling its functions, 17 beta-hydroxy or 17-oxo group of androsten steroids, and 3) the 11th position of all the substrates under study. It was shown that the binding of various substrates into stoichiometric (1:1) steroid-protein complexes provides a transition to high spin state from 30-40% (cortisol, corticosterone) to 90-95% (11-deoxycorticosterone) of hemoprotein iron. Using the experimental system containing individual cytochrome P-450 (11 beta) and adrenodoxin, as well as the steroid and nonionic detergent Tween 20, it was shown that the parameters of substrate binding and hemoprotein spin equilibrium did not differ from the corresponding parameters of the cytochrome-adrenodoxin dienzyme complex. The peculiarities of the multiligand interactions in the 11 beta-hydroxylase system, involving cytochrome, substrates and ferredoxin demonstrate some analogy with a bacterial camphor hydroxylase system and some differences from the mitochondrial system for the side chain cleavage of cholesterol. 相似文献
11.
12.
M Morisaki K Bannai N Ikekawa M Shikita 《Biochemical and biophysical research communications》1976,69(2):481-488
All of the four 20,22-epoxycholesterols and (E)-20(22)-dehydrocholesterol were chemically synthesized and incubated with purified adrenocortical cytochrome P-450scc in the presence of an appropriate electron-supplying system. None of these cholesterol derivatives were significantly converted to pregnenolone by the enzyme. A slight inhibition of the side-chain cleavage of radioactive cholesterol was observed by the addition of the cholesterol derivatives, but there occurred no trapping of the radioactivity by these compounds. It may be concluded that the side-chain cleavage of cholesterol by the adrenal cytochrome P-450 does not operate through olefin and epoxide formation as the intermediates. 相似文献
13.
A new method for the removal of the stabilizing substrate, deoxycorticosterone, from adrenal cytochrome P-450(11) beta, has been developed. Dextran coated charcoal is used for the adsorption of the steroid and the adsorbed steroid is separated from the cytochrome P-450-preparation by low speed centrifugation. The substrate-free enzyme, obtained in this manner, has all the characteristic spectral properties of low-spin cytochrome P-450(11) beta and may be converted to the high-spin form by the addition of deoxycorticosterone. The dextran coated charcoal method has the following advantages over the previously used method of substrate removal. It does not require the addition of the cofactors for cytochrome P-450-dependant hydroxylation of deoxycorticosterone, small amounts of enzyme may be prepared in a short time and the enzyme preparation is not diluted to any great extent during the process. 相似文献
14.
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
19-Oxoandrostenedione, the product of 19-hydroxyandrostenedione by the 19-oxidase activity of the purified P-450(11)beta system of adrenal cortex mitochondria, was further oxidized and demethylated at the 10-position to give the C18-steroids, estrone (aromatase reaction) and 19-norandrostenedione (nonaromatizing 10-demethylase or C10-19 lyase reaction). These reactions, together with the initial hydroxylation of androstenedione at C19, form a sequence of P-450(11)beta-catalyzed C19-steroid 19-monooxygenase reactions. P-450(11)beta is thus similar to placental endoplasmic P-450AROM in some of its substrate specificity, but the two forms of P-450 appear to be different in both physiology and properties. 相似文献
16.
The effects of several imidazole antimycotic agents, an imidazole and several mineralocorticoid analogs on the cytochrome P-450(11)beta-catalyzed 11 beta-hydroxylation of 11-deoxycorticosterone and aldosterone synthesis were examined. Ketoconazole, clotrimazole, miconazole and etomidate were found to be potent inhibitors of the reactions, causing 50% inhibition of the 11 beta-hydroxylase activity at concentrations between 10(-8) and 10(-7) M. The potency of etomidate as to the inhibition of aldosterone- and 18-hydroxycorticosterone-production was found to be almost equal to that in the case of 11 beta-hydroxylation. Spironolactone and other newly synthesized mineralocorticoid analogs were also found to inhibit the cytochrome P-450(11)beta-mediated reactions. The ID50 values of these drugs for inhibition of the 11 beta-hydroxylase activity were almost equal to those in the case of the aldosterone- and 18-hydroxycorticosterone-biosynthetic activities. The results of kinetical studies indicated that one of the mineralocorticoid analogs, Compound 23-0586, acts as a competitive inhibitor for the cytochrome P-450(11)beta-mediated reactions. 相似文献
17.
A full-length cDNA complementary to mouse liver mRNA coding for one of the cytochromes P-450 (P-450) in the P-450IIIA family, namely P-450IIIM1, was isolated and completely sequenced. The sequence of this cDNA clone, pMDex13, revealed that it encoded a polypeptide of 504 deduced amino acid residues (Mr = 57,853). The deduced amino acid sequence showed 87.3 and 84.9% identity with rat P-450IIIA1 and P-450IIIA2, respectively. The NH2-terminal 24 amino acid sequences of P-450IIIAM1 were completely identical with purified mouse P-450UT protein. RNA blot analysis showed that mRNA content of hepatic P-450IIIAM1 was remarkably increased by treatment of mice with dexamethasone. 相似文献
18.
Purification and characterization of two distinct forms of rat adrenal cytochrome P450(11) beta: functional and structural aspects 总被引:5,自引:0,他引:5
It is generally accepted that the last three steps of aldosterone biosynthesis are catalyzed by a single enzyme, i.e., cytochrome P450(11) beta (P450XIB). We have previously reported that rat adrenal mitochondria may be capable of producing two forms of P450(11) beta which differ in molecular weight (49 and 51 kDa). In the present study we describe the purification, the enzymatic activities, and some structural properties of these two proteins. Using zona fasciculata mitochondria, the 51-kDa protein was purified to electrophoretic homogeneity by means of octyl-Sepharose chromatography. In a reconstituted system the protein catalyzed 18- and 11 beta-hydroxylation of deoxycorticosterone, but exhibited no 18-hydroxylation or 18-hydroxydehydrogenation of corticosterone. The 49-kDa protein was isolated from zona glomerulosa mitochondria of rats kept on a low-sodium, high-potassium regimen. Using octyl-Sepharose chromatography, it could be separated from the 51-kDa protein. A reconstituted eluate fraction, containing the 49-kDa protein, converted deoxycorticosterone not only to 18-OH-deoxycorticosterone and corticosterone, but also to 18-OH-corticosterone and aldosterone. These findings indicate that the rat adrenal cortex is capable of producing two distinct forms of active cytochrome P450(11) beta. A structural relationship of the 49- and 51-kDa proteins was indicated by experiments involving limited proteolysis. Thus, digestion with alpha-chymotrypsin and V8-protease yielded very similar peptide maps for both proteins. During potassium repletion of potassium-deficient rats, the disappearance of the active 51-kDa protein coincided with the appearance of the 49-kDa protein. These results are suggestive of a post-translational processing mechanism converting the 51-kDa protein into the smaller 49-kDa form. However, the 49-kDa protein might also be encoded by a distinct gene, regulated separately depending on the physiological conditions. 相似文献
19.
A Lombardo M Laine G Defaye N Monnier C Guidicelli E M Chambaz 《Biochimica et biophysica acta》1986,863(1):71-81
Cytochrome P-450(11)beta from adrenal cortex is an intrinsic membrane protein embedded in the inner mitochondrial membrane. Topography of the protein inside a phospholipid bilayer was examined using controlled proteolysis of purified cytochrome P-450(11)beta following its integration into artificial liposomes. Inclusion of the protein into phospholipid vesicles led to a marked stabilization of the cytochrome activity. Trypsin treatment of the liposome-integrated cytochrome resulted in the rapid disappearance of the native protein moiety (47 kDa), while a major 34 kDa peptide component was formed. This peptide core retained the heme moiety and part of the cytochrome steroid-11 beta hydroxylase activity. Very similar observations were obtained when inside-out vesicles prepared from isolated adrenocortical mitoplasts were examined with the same approach. It is thus suggested that adrenocortical cytochrome P-450(11)beta is embedded in the inner mitochondrial membrane as well as in artificial liposomes by a major hydrophobic domain associated with the heme moiety while a limited domain remains accessible on the matrix side of the membrane surface. The previous described phosphorylation of the cytochrome P-450(11)beta on a serine residue, by the cAMP-dependent protein kinase is suggested to occur in the protein domain oriented toward the membrane surface, the phosphorylation site being lost under mild proteolytic digestion of the membrane-integrated protein. 相似文献