首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glycoprotein that exhibits alkaline phosphatase activity and binds Ca2+ with high affinity has been extracted and purified from cartilage matrix vesicles by fast protein liquid chromatography. Antibodies against this glycoprotein were used to analyze its distribution in chondrocytes and in the matrix of calcifying cartilage. Under the light microscope, using immunoperoxidase or immunofluorescence techniques, the glycoprotein is localized in chondrocytes of the resting zone. At this level, the extracellular matrix does not show any reaction. In the cartilage plate, between the proliferating and the hypertrophic region, a weak immune reactivity is seen in the cytoplasm, whereas in the intercolumnar matrix the collagen fibers appear clearly stained. Stained granular structures, distributed with a pattern similar to that of matrix vesicles, are also visible. Calcified matrix is the most stained area. These results were confirmed under the electron microscope using both immunoperoxidase and protein A-gold techniques. In parallel studies, enzyme activity was also analyzed by histochemical methods. Whereas resting cartilage, the intercellular matrix of the resting zone, and calcified matrix do not exhibit any enzyme activity, the zones of maturing and hypertrophic chondrocytes are highly reactive. Some weak reactivity is also shown by chondrocytes of the resting zone. The observation that this glycoprotein (which binds Ca2+ and has alkaline phosphatase activity) is synthesized in chondrocytes and is exported to the extracellular matrix at the time when calcification begins, suggests that it plays a specific role in the process of calcification.  相似文献   

2.
ATP pyrophosphohydrolase was partially purified from fetal bovine epiphyseal cartilage. The purification was about 10- and 100-fold over the enzyme activities of matrix vesicle fraction and cell homogenate, respectively. The pyrophosphohydrolase and alkaline phosphatase were separated by a sequential application of Sepharose CL-6B and DEAE-cellulose column chromatographies. The purified enzyme migrated as a single band corresponding to the molecular weight of 230,000 in sodium dodecyl sulfate-polyacrylamide disc gel by electrophoresis. The enzyme absolutely required Zn2+ for its activity and appeared to bind Zn2+ strongly with an apparent affinity of p[Zn2+]0.5 = 13.4. The apparent Km for ATP was 0.18 mM. The enzyme was also reactive toward various nucleoside triphosphates including GTP, CTP, and UTP. In contrast, various phosphodiesters including RNA, UDP-glucose, NAD, and bis-p-nitrophenylphosphate were 5% or less as reactive as the nucleoside triphosphates. The pyrophosphohydrolase was inactive toward adenosine 3':5'-monophosphate or various phosphonates. UDP-glucose (1 mM), NAD (1 mM), or RNA (1 mg/ml) failed to inhibit the ATP pyrophosphohydrolase activity. These observations suggest that the ATP pyrophosphohydrolase of the cartilage is probably not a phosphodiesterase I. The matrix vesicle fraction, which probably also included some plasma membrane vesiculated during collagenase digestion, contained the highest specific activity of the enzyme as compared to other subcellular fractions of either epiphyseal or articular cartilage.  相似文献   

3.
Localization of the parallel elastic components (PECs) in skinned muscle fibers was investigated by analyzing the change of the resting tension, which accompanies the dissociation of the A- and I-bands. The A-band was dissociated from both ends by increasing the concentration of KCl under relaxing conditions (0.09-0.54 M KCl, 4.0 mM MgATP, 1.0 mM Mg2+, 4.0 mM EGTA, pH 6.0-9.0, 20 degrees C). At sarcomere lengths greater than or equal to 3.5 microns, the length of the A-band was estimated by comparing the intensity of the first-order optical diffraction line with the results of model calculations. These results were supported by differential-interference microscopy and sodium dodecyl sulfate gel electrophoresis. It was shown that the resting tension decreased nearly in proportion to the residual length of the A-band. At sarcomere lengths less than or equal to 4.0 microns, the resting tension after the dissociation of the A-band was lowered to less than 10% of the initial value. On the other hand, at sarcomere lengths greater than or equal to 5.0 microns the resting tension after the dissociation of the A-band still showed approximately 35% of the initial value and did not change even after the I-band was dissociated by a solution containing KI. From these results, we propose that most of the PECs contributing to resting tension bind almost uniformly to the A-band and there are also PECs connecting Z-lines.  相似文献   

4.
P Prent? 《Histochemistry》1991,95(5):495-501
BTAN (Sumi Y et al. (1982) Histochemistry 73:481) was investigated as a histochemical Cd/Zn chelator. Cd-BTAN exhibits a main peak about 635 nm, while Zn-BTAN exhibits a main peak about 644 nm. The isobestic wavelength for Cd-BTAN and Zn-BTAN is 638 nm. The microscopical detection limit for Cd is about 25 amol/microns 2, and for Zn about 5 amol/microns 2. The relation between metal and bound chelator is fairly linear at a BTAN concentration more than 10-fold the metal concentration. Histochemical localization was fair to good, with a crystal size of up to 0.2-0.3 micron. The chelate was unaffected by hydrophilic and largely also by hydrophobic mounting media. The original staining procedure proved erratic and was modified. Posttreatment with oxine to selectively demonstrate Cd in the presence of Zn (Sumi Y et al. 1982) seriously reduced the staining intensity. Post-treatment for 8-15 min with HCl, 0.5 mol/l, in 50% ethanol removed Cd-BTAN completely with little reduction of Zn staining intensity, even from sites with 5x as much Cd as Zn. It is concluded that BTAN permits direct quantitative detection of (Zn + Cd). Provided certain precautions are taken quantitative detection of Zn and quantitation of Cd in mixed Zn/Cd sites is possible by microphotometry of the stained section before and after differentiation for 8-15 min with the HCl/50% ethanol medium.  相似文献   

5.
We aimed to examine the presence of Zn, a trace element, in osteoarthritis (OA) cartilage and meniscus from patients undergoing total knee joint replacement for primary OA. We mapped Ca2+ and Zn2+ at the mesoscopic scale by X-ray fluorescence microanalysis (μX-ray) to determine the spatial distribution of the 2 elements in cartilage, μX-ray absorption near edge structure spectroscopy to identify the Zn species, and μX-ray diffraction to determine the chemical nature of the calcification. Fourier transform infrared spectroscopy was used to determine the chemical composition of cartilage and meniscus. Ca2+ showed a heterogeneous spatial distribution corresponding to the calcifications within cartilage (or meniscus) or at their surface. At least 2 Zn2+ species were present: the first may correspond to Zn embedded in protein (different Zn metalloproteins are known to prevent calcification in biological tissues), and the second may be associated with a Zn trap in or at the surface of the calcification. Calcification present in OA cartilage may significantly modify the spatial distribution of Zn; part of the Zn may be trapped in the calcification and may alter the associated biological function of Zn metalloproteins.  相似文献   

6.
The tissue localization was analysed of collagen X during human fetal and juvenile articular cartilage-bone metamorphosis. This unique collagen type was found in the hypertrophic cartilage zone peri- and extracellularly and in cartilage residues within bone trabeculae. In addition, occasionally a slight intracellular staining reaction was found in prehypertrophic proliferating chondrocytes and in chondrocytes surrounding vascular channels. A slight staining was also seen in the zone of periosteal ossification and occasionally at the transition zone of the perichondrium to resting cartilage. Our data provide evidence that the appearance of collagen X is mainly associated with cartilage hypertrophy, analogous to the reported tissue distribution of this collagen type in animals. In addition, we observed an increased and often "spotty" distribution of collagen X with increasing cartilage "degeneration" associated with the closure of the growth plate. In basal hypertrophic cartilage areas, a co-distribution of collagens II and X was found with very little and "spotty" collagen III. In juvenile cartilage areas around single hypertrophic chondrocytes, co-localization of collagens X and I was also detected.  相似文献   

7.
Human articular cartilage contains very low levels of metalloprotease activity; the activity in 1 g of cartilage is approximately equivalent to the activity of 1 microgram of trypsin. Development of a sensitive assay, based on the digestion of radioactive proteoglycan, has made it possible to study protease activity in 1-2-g specimens of cartilage. Cartilage was extracted with Tris buffer in the cold and with Tris buffer containing 10 mM CaCl2 at 60 degrees C. The extracts were passed through Sepharose 6B; two major and two minor metalloprotease activities were detected. A neutral metalloprotease activity, pH optimum 7.4, was found as a latent form of Mr = 56,000. It could be activated with aminophenylmercuric acetate or trypsin with a resultant decrease of Mr to 40,000. An acid metalloprotease, pH optimum 5.3, also occurred as a latent form of Mr = 50,000. Activation converted this to Mr = 35,000. Removal of calcium ions by dialysis reduced the activity of the neutral enzyme by 80-85% and of the acid enzyme by 100%. Both activities were restored by 10 mM Ca2+. Both enzymes were completely inhibited by 1 mM o-phenanthroline in the presence of excess calcium. This inhibition was overcome by 1 mM Zn2+ and, to a lesser extent, by Co2+. These proteases may be important in the metabolism of the cartilage matrix and in its destruction in osteoarthritis.  相似文献   

8.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a highly complicated, membrane-bound enzyme. It is central to energy transduction, an important source of cellular reactive oxygen species, and its dysfunction is implicated in neurodegenerative and muscular diseases and in aging. Here, we describe the effects of Zn2+ on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn2+ can be used to probe the mechanism of complex I. Zn2+ inhibits complex I more strongly than Mg2+, Ca2+, Ba2+, and Mn2+ to Cu2+ or Cd2+. It does not inhibit NADH oxidation or intramolecular electron transfer, so it probably inhibits either proton transfer to bound quinone or proton translocation. Thus, zinc represents a new class of complex I inhibitor clearly distinct from the many ubiquinone site inhibitors. No evidence for increased superoxide production by zinc-inhibited complex I was detected. Zinc binding to complex I is mechanistically complicated. During catalysis, zinc binds slowly and progressively, but it binds rapidly and tightly to the resting state(s) of the enzyme. Reactivation of the inhibited enzyme upon the addition of EDTA is slow, and inhibition is only partially reversible. The IC50 value for the Zn2+ inhibition of complex I is high (10-50 microm, depending on the enzyme state); therefore, complex I is unlikely to be a major site for zinc inhibition of the electron transport chain. However, the slow response of complex I to a change in Zn2+ concentration may enhance any physiological consequences.  相似文献   

9.
The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.  相似文献   

10.
李铮铮  伍钧  唐亚  杨刚 《生态学报》2007,27(12):5441-5446
采用营养液培养方法研究铅、锌及其交互作用对鱼腥草叶绿素含量及抗氧化酶系统的影响。实验结果显示,随着Pb浓度的增加,鱼腥草叶绿素含量逐渐降低但无显著变化。Zn在一定浓度下能提高鱼腥草叶绿素含量,而在高浓度Zn胁迫下,叶绿素含量急剧下降。鱼腥草叶片中SOD、POD和CAT3种酶活性都是随着Pb浓度的增加先上升后下降。随着Zn浓度的增加,SOD和CAT也是先上升后下降,POD则是逐渐上升。Pb—Zn交互作用增加了鱼腥草叶绿素含量,对SOD和POD活性具有抑制作用,对CAT活性影响不明显。同时研究结果还表明,单一Pb、Zn对鱼腥草叶绿素含量和抗氧化酶系统的影响大于Pb、Zn二者的共同作用,其中高浓度Zn对鱼腥草的伤害作用最大,而当溶液Pb处理浓度达到400mg/L时,鱼腥草仍能正常生长,说明鱼腥草具有较强的耐Pb能力。  相似文献   

11.
Membranes from brefeldin A-treated and untreated chick embryo epiphyseal cartilage were fractionated separately by equilibrium sucrose density gradient centrifugation. Fractions were assayed for Gal I transferase, Gal II transferase, Gal ovalbumin transferase, chondroitin polymerization on endogenous acceptors, GalNAc transfer to exogenous chondroitin hexasaccharide, and sulfate transfer to exogenous chondroitin. Gal I transferase and Gal II transferase activities were found in heavier cis- and medial-Golgi fractions, but with distributions different from each other. Brefeldin A had no effect on either their distribution or their total activity. Gal ovalbumin transferase activity in fractions from untreated cartilage was found as a dual peak in medial- and trans-Golgi areas. The latter peak was diminished in the fractions from the brefeldin A-treated cartilage, whereas the former peak was correspondingly increased. A similar dual medial- and trans-Golgi distribution for chondroitin polymerization on endogenous acceptors was seen with fractions from untreated cartilage. This was modified in fractions from brefeldin A-treated cartilage with a complete loss of synthesis in the trans-Golgi peak and a slight increase in synthesis in the medial-Golgi peak. However, the distribution of GalNAc transferase activity using exogenous chondroitin hexasaccharide indicated that considerable chondroitin-synthesizing activity still remained in these trans-Golgi fractions. This demonstrated that brefeldin A had caused a block in movement of endogenous proteochondroitin acceptors to the trans-Golgi site of synthesis. Sulfotransferase activity was also found in a dual distribution similar to that of the chondroitin polymerization and GalNAc transferase, with a small reduction in activity in the trans-Golgi fractions of brefeldin A-treated cartilage. Thus, treatment of cartilage with brefeldin A resulted in the loss of considerable trans-Golgi chondroitin sulfate-synthesizing enzyme activity and a block in the transport of one form of proteochondroitin precursor to the trans-Golgi membranes.  相似文献   

12.
We have demonstrated that high concentrations of retinoic acid (RA) inhibit expression of the differentiated phenotypes of rabbit costal chondrocytes in culture [M. Takigawa et al. (1980) Proc. Natl. Acad. Sci. U.S. 77, 1481-1485]. In this study we examined the effects of low concentrations of RA on rabbit costal chondrocytes cultured in medium containing vitamin A-deficient serum. In vitamin A-deficient medium, chondrocytes isolated from growth cartilage (GC) proliferated only very slowly, and RA strongly stimulated their proliferation. This stimulatory effect was observable at a concentration of 10(-10) M RA and maximal at a concentration of 10(-8) M. RA at 10(-8) M did not change GC cells from a typical polygonal shape to fibroblast-like cells or inhibit their synthesis of type II collagen. Moreover, RA-treated cells did not synthesize type I collagen. RA inhibited glycosaminoglycan (GAG) synthesis by the cells dose-dependently, but did not change the distribution profile of proteoglycan monomers as determined by glycerol gradient centrifugation. The inhibitory action of RA on GAG synthesis was reversible: after removal of RA from the culture, the rate of GAG synthesis increased within 2 days. In contrast, resting cartilage (RC) cells proliferated well in vitamin A-deficient medium without addition of RA, and RA (10(-8) M) stimulated their proliferation only slightly. Furthermore, the inhibitory effect of RA on GAG synthesis in RC cells was much weaker than that in GC cells. These observations suggest a physiological role of RA in cartilage in stimulating the proliferation of GC cells without causing drastic change in their differentiated phenotypes.  相似文献   

13.
14.
Summary Quantitative X-ray microanalysis was under-taken to follow the elemental changes that occur in the process of chondrocyte differentiation. For analysis at the cellular level, semi-thick freeze-dried cryosections of rat rib growth plate cartilage were used. For evaluation of the elemental concentrations at the subcellular level, thin sections of freeze-dried and low temperature vacuum embedded cartilage were analyzed. Levels of Na, P, S, Cl, K, and Ca were determined in the cells and extracellular matrix in different zones of the cartilage — resting, proliferative, and hypertrophic. Proliferative cells had a sodium concentration that was twice that of resting cells, suggesting that Na may play an important role in the regulation of DNA- and protein-synthesis in chondrocytes. A concomitant rise in Na and S concentration occurred between resting zone and proliferative zone cartilage matrix. The high concentrations of Na and K in the matrix are probably due to the high amount of sulfate in proteoglycans which may bind these cations.  相似文献   

15.
In this study we determined the levels of trace elements (zinc, copper, lead, cadmium and mercury) in three layers of bones of the hip joint (cartilage, compact bone and spongy bone) of 30 red foxes (Vulpes vulpes) from north-western Poland. Concentrations of Cu, Zn, Pb and Cd were determined by atomic absorption spectrophotometry (ICP-AES) in inductively coupled argon plasma using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In cartilage, compact bone and spongy bone samples from the red fox, median concentrations of the metals studied could be arranged in the following descending series: Zn > Cu > Pb > Cd > Hg, the values ranging from 142 to 0.002 mg/kg dw. There was a significant difference in Cu concentrations, among all the materials analyzed, with much more Cu found in spongy bone than in compact bone. Significant differences were also noted in the case of Hg concentrations in cartilage with compact bone and the spongy bone, and between concentrations of this metal in compact bone and spongy bone. In males, the concentration of Hg in spongy bone was greater than in females. Younger foxes had a higher concentration of this metal in cartilage than adults. The strongest synergistic relationships were observed in spongy bone between the Zn and Cu, Zn and Cd, as well as between Cu and Cd. Statistically significant antagonistic relationships were detected between zinc and lead in compact bone. In addition to monitoring studies conducted on the abiotic environment, an urgent need exists for long-term monitoring of concentrations of heavy metals with long-term effects on living organisms. An important addition is provided by biomonitoring studies on domesticated and free-living mammals, including Canidae.  相似文献   

16.
Neprilysin (neutral endopeptidase, enkephalinase, CALLA, CD10, NEP) is a regulatory Zn metallopeptidase expressed in the brush border membranes of the kidney and has been found in porcine chondrocytes and rat articular cartilage as well as other cell types and tissues. Although its function in cartilage is not currently known, previous observations of high levels of NEP enzymatic activity in the synovial fluid of arthritic patients and on the chondrocyte membranes of human osteoarthritic cartilage have led to the hypothesis that NEP is involved in the inflammation or degradation pathways in articular cartilage. Our study localized endogenous NEP to the membranes of mature bovine articular chondrocytes in a tissue explant model and demonstrated that the addition of soluble recombinant NEP (sNEP) to the culture medium of bovine cartilage explants leads to the degradation of aggrecan through the action of aggrecanase. A 6-day exposure to sNEP was necessary to initiate the degradation, suggesting that the chondrocytes were responding in a delayed manner to an altered composition of regulatory peptides. This NEP-induced degradation was completely inhibited by the NEP inhibitors thiorphan and phosphoramidon. These results suggest that NEP is present as a transmembrane enzyme on articular chondrocytes where it can cleave regulatory peptides and lead to the induction of aggrecanase.  相似文献   

17.
The catalytic activity of a mutant of Photobacterium leiognathi Cu, Zn superoxide dismutase in which the Glu59 residue, conserved in most bacterial variants of the enzyme, has been replaced by glutamine was investigated by pulse radiolysis. At neutral pH the enzyme was found to have a kcat/KM of 1.0 +/- 0.1 x 10(10) M-1s-1 the highest value ever found for any superoxide dismutase. Brownian dynamics simulation suggests that such a high value is due to an enhanced substrate attraction by the modified electric field distribution. The mutant is also characterized by an active-site widely accessible for the solvent, since iodide is able to interact with the copper atom with an affinity constant twice as high as that found in the native enzyme. The large solvent accessible surface of the copper site together with a favorable distribution of the protein-generated electric field gives rise to the most efficient enzyme ever found with activity close to the diffusion limit.  相似文献   

18.
The activity of glucose dehydrogenase present in resting spores of Bacillus subtilis varied strikingly with the conditions for disrupting the spores by sonic treatment, namely, the time and strength of sonication, and the type and pH of the solution used for suspending the spores. When the resting spores were sonicated for 30 min at a current of 1.45 A in 100 mM phosphate buffer in the range of pH 6.0 to 6.6 or in deionized water, the enzyme activity of the former suspension was approximately 10 times higher than that of the latter suspension. However, the enzyme activity of the latter was markedly stimulated in the presence of sodium chloride. The glucose dehydrogenase from resting spores disrupted in 100 mM phosphate buffer (pH 6.6) was a salt-independent, active enzyme with a molecular weight of about 120,000, whereas the enzyme from resting spores disrupted in deionized water was a salt-dependent, inactive one with a molecular weight of about 55,000. A high concentration of dipicolinic acid strongly inhibited activation by a salt of inactive glucose dehydrogenase from resting spores in deionized water, suggesting one of its several important roles in vivo.  相似文献   

19.
Summary The femoral bone from the 18-day pregnancy embryo and an rib cartilage of mature mice have been investigated using PIXE (proton induced X-ray emission) in combination with a proton microprobe on snap frozen cryosectioned material. The localization and the results of quantitative measurement of P, S, Cl, K, Ca, Fe and Zn have been correlated with the histochemical localization of inorganic deposits. It has been found that in calcifying and degenerating cartilage of the growth plate there is substantial loss of S; this element being indicative for sulphate groups of glycosaminoglycans. This change seems to be an important factor conditioning the process of mineralization. Zn is found in higher concentration in mineralized tissues, both in embryonal and mature cartilage as well as in the bone, and this suggests that Zn is also involved in the mineralization process. The mineralization of rib cartilage exceeds that of embryonal bone, and the Ca/P ratio is higher in the former than in the hydroxyapatite of the latter. The method described is a useful analytical tool especially for such types of studies in which elements are not easily redistributed by freezing, cutting and drying; e.g. in investigations of mineral deposits.  相似文献   

20.
Lysozyme (mucopeptide-N-acetylmuramylhydrolase, EC 3.2.1.17) is present in mammalian cartilage. Lysozyme was isolated and purified from bovine and canine cartilage and from dog serum using various chromatographic steps and affinity chromatography on carboxymethylated chitin. Amino acid analysis of bovine cartilage lysozyme showed that it is similar to other mammalian lysozymes. Anti-canine lysozyme antibodies cross-react with calf lysozyme, but not with hen egg white or embryonic chick cartilage lysozyme. In the epiphyseal plate of the dog, 90-μm sections were analyzed for lysozyme and its was found that in the hypertrophic zone its concentration is approximately six times higher than it is in the resting zone. Using immunocytochemical techniques at the electromicroscopic level, lysozyme in the epiphyseal plate of the dog was localized extracellularly, mainly in the immediate vicinity of the chondrocytes, the territorial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号