首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of chromosome G-banding were used to identify two new karyotypic races of the common shrew (Sorex araneus L.) in the European part of Russia. The chromosomal diagnosis of race St. Petersburg included five metacentrics (hk, ip, jl, mq, and nr) and two acrocentrics (g and o) (2Na = 20); the diagnosis of race West Dvina included six metacentrics (gm, hk, ip, jl, no, and qr) (2Na = 18). The phylogenetic significance of the chromosomal markers gm, hk, and ip is considered and the possibility of reticulate evolution in the species S. araneus is discussed.  相似文献   

2.
Presented is the karyotype of Sorex araneus from 4 trapping sites in southwestern Germany. From this species nearly 20 chromosomal races have so far been described. In the study area autosomal numbers of 2na= 22–24 were recorded. The characteristical metacentrics jl, hi, gm, kr and the acrocentrics n, o, p, q were identified by G-banding. The element kr shows Robertsonian polymorphism. The metacentrics only allow a classification of the studied populations as chromosomal race “Vaud” from Switzerland. The postglacial recolonization and the possible presence of other chromosomal races in the central and northern parts of Germany are briefly discussed. Different selection pressures act on metacentrics and acrocentrics in central populations of a chromosomal race in contrast to those living in contact zones of different chromosomal races. It is suggested that the smaller autosomal arms are subject to weaker selection pressure to be fixed as metacentrics.  相似文献   

3.
Karyotype and genetic variation of the common shrew (Sorex araneus) from Mt. Pelister in southern Macedonia has been studied. Whereas all autosomes in the chromosomal set (2 na, = 28, the only present metacentrics being af, bc, jl, and tu) were of the standard type as well as the sex chromosomes X and Y2 in males, the Y1 chromosome was a small metacentric. This chromosomal feature is unique among the common shrew populations studied cytogenetically so far. Three out of 33 loci analysed (Sdh, 6Pgd, Mdh-1) were discriminant between the Mt. Pelister population and Sorex araneus from Slovenia and two loci (Est-3, Ada) were partially discriminant. A relatively high value of Nei's genetic distance (D = 0.137) confirms unique character of the Pelister population.  相似文献   

4.
In Central Poland, two similar chromosome races of the common shrewSorex araneus Linnaeus, 1758 were earlier described: Drnholec race (arm combinationsgm, hi, ko, nr) and Stobnica race (gm, hi, ko, np). Great similarity in size and G-banding patterns between thenr andnp metacentrics leave open to doubt the actual existence of both races in Poland. The present study, which is based on good quality karyotypes of common shrews from 18 sites, showed the presence of thenr arm combination. There is therefore strong evidence that thenp arm combination was wrongly described and thus the Stobnica race should not be considered valid.  相似文献   

5.
Two parapatric chromosomal races of the common shrew (Sorex araneus) in Poland differ in their complement of metacentric arm combinations: hk, io, gr, nm (race IV), and hi, ko, gm, np (race II). In hybrids, these eight race-diagnostic metacentrics form two randomly segregating complexes. The first complex (C1) occurs in the form of a ring configuration ok/kh/hi/io, or a chain o/ok/kh/hi/i (when there is Robertsonian polymorphism of the element io). The second complex (C2) always takes the form of a six-element chain configuration r/rg/gm/mn/np/p. The C2 complex may be shortened to five or even four elements, when acrocentrics g, m and n are present. In the contact zone we found shrews of pure races (race II or IV), as well as hybrids with C1 or C2 complexes, and recombinants hi, ko, gr, nm. Complex heterozygotes are likely to suffer reduced fertility due to malsegregation at meiosis. However, the C1 hybrids with ring configurations occur with a high frequency throughout the contact zone. This suggest that their fitness is only slightly lowered relative to pure race individuals, in contrast to the hybrids with C1 or C2 chain configurations, which presumably have a more heavily reduced fertility. On the other hand, at the center of the zone there is a high proportion of recombinants, which, being chromosomal homozygotes, should display normal meiotic segregation. Furthermore, the high frequencies of recombinants within the contact zone should facilitate gene flow between the races. The occurrence of recombinants plays a similar role as the appearance of the maximum frequencies of acrocentric homozygotes described in several contact zones of S. araneus.  相似文献   

6.
Meiotic drive has attracted much interest because it concerns the robustness of Mendelian segregation and its genetic and evolutionary stability. We studied chromosomal meiotic drive in the common shrew (Sorex araneus, Insectivora, Mammalia), which exhibits one of the most remarkable chromosomal polymorphisms within mammalian species. The open question of the evolutionary success of metacentric chromosomes (Robertsonian fusions) versus acrocentrics in the common shrew prompted us to test whether a segregation distortion in favor of metacentrics is present in female and/or male meiosis. Performing crosses under controlled laboratory conditions with animals from natural populations, we found a clear trend toward a segregation distortion in favor of metacentrics during male meiosis, two chromosome combinations (gm and jl) being significantly preferred over their acrocentric homologs. Apart for one Robertsonian fusion (hi), this trend was absent in female meiosis. We propose a model based on recombination events between twin acrocentrics to explain the difference in transmission ratios of the same metacentric in different sexes and unequal drive of particular metacentrics in the same sex. Pooled data for female and male meiosis revealed a trend toward stronger segregation distortion for larger metacentrics. This is partially in agreement with the frequency of metacentrics occurring in natural populations of a chromosome race showing a high degree of chromosomal polymorphism.  相似文献   

7.
Recently, we displayed an Iberian shrew species (Sorex granarius) with telomere structures unusual for mammals. Long telomeres on the short acrocentric arms contain an average of 213 kb of telomere repeats, whereas the other chromosomal ends have only 3.8 kb (Zhdanova et al., 2005; 2007). However, it is not clear whether these telomeres are typical for all shrew species or only for S. granarius. S. granarius and common shrew Sorex araneus are sibling species. In this study, using modified Q-FISH we demonstrated that telomeres in S. araneus from various chromosomal races distinguished by their number of metacentrics contain 6.8–15.2 kb of telomeric tracts. The S. araneus telomere lengths appear to correspond to telomere lengths in the majority of both shrew species and wild mammals, whereas S. granarius has telomeres with unique or rare structures. Using DNA and RNA high-specific modified probes to telomeric repeats (PNA and LNA), we showed that interstitial telomeric sites in S. araneus chromosomes contain mainly telomeric DNA and that their localization coincide with some evolutionary breakpoints. Interstitial telomeric DNA in S. granarius chromosomes was not revealed. Thus, the distribution of telomeric DNA may be significantly different, even in closely related species whose chromosomes are composed of almost identical chromosomal arms.  相似文献   

8.
A FISH with a probe for telomeric and rDNA repeats and immunofluorescence with ANA CREST and antibodies to nucleolae protein B23 were used to study the three-dimensional (3D) organization of fibroblast interphase nuclei in two shrew twin species, Sorex granarius and Sorex araneus, of the Cordon race. Karyotypes of these species are composed of nearly identical chromosomal arms and differ in the number of their metacentrics and the structures of their terminal chromosome regions. In the short arms of S. granarius, 32 of the acrocentrics have large telomeres that contain an average of 218 kb telomere repeats, which alternate with ribosomal repeats. These regions also contain active nucleolar organizing regions (NORs). In contrast, in active NORs in S. araneus are localized at the terminal regions of 8 chromosomal arms (Zhdanova et al., 2005; 2007b). Here, we show that associations of chromosomes by telomeres and the contact of a part of the telomere clusters with the inner nuclear membrane and nucleolus characterize the interphase nuclei of both Sorex granarius and Sorex araneus. We also reveal the partial colocalization of telomere and ribosomal clusters and the spatial proximity of centomeric and telomeric regions in the interphase nuclei of S. granarius. It appears that only ribosomal clusters containing a sufficient number of active ribosomal genes exhibit a connection with the nucleolus. Nucleolus disassembly during the fibroblastís transition to mitosis and the role of the B23 protein in this process have been studied.  相似文献   

9.
10.
Addition of Na+ to the K+-loadedVibrio alginolyticus cells, creating a 250-fold Na+ gradient, is shown to induce a transient increase in the intracellular ATP concentration, which is abolished by the Na+/H+ antiporter, monensin. The pNa-supported ATP synthesis requires an additional driving force supplied by endogenous respiration or, alternatively, by a K+ gradient (high [K+] inside). In the former case, ATP formation is resistant to the protonophorous uncoupler. Dicyclohexylcarbodiimide and diethylstilbestrol, but not vanadate, completely inhibit Na+ pulse-induced ATP formation. The data agree with the assumption that Na+-ATP-synthase is involved in oxidative phosphorylation inV. alginolyticus. Interrelation of H+ and Na+ cycles in bacteria is discussed.Abbreviations and electrochemical gradients of H+ and Na+, respectively - transmembrane electric potential difference - pH, pNa, and pK concentration gradients of H+, Na+, and K+, respectively - CCCP carbonyl cyanidem-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diesthylstilbestrol - HQNO 2-heptyl-4-hydroxyquinolineN-oxide - Tricine N[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

11.
The common shrewSorex araneus Linnaeus, 1758 is subject to intense chromosomal polymorphism. About 65 chromosome races are presently known. One of these chromosome races (the Valais race) is karyologically, morphologically, biochemically, and genetically clearly distinct from all other chromosome races of the species. Recent studies of hybrid zones between the Valais race and other chromosome races in the Swiss and French Alps add further strong evidence for the specific taxonomic status of the Valais race. Chromosomes and diagnostic protein markers reveal sharp frequency clines and strong heterozygote deficits. In one hybrid zone, the maintenance of the strong genetic differentiation of the hybridizing taxa was confirmed by a study with autosomal microsatellites indicating minimal gene flow. A microsatellite marker on the Y-chromosome showed complete absence of male mediated gene flow suggesting hybrid male sterility. To clarify the taxonomic status of this taxon, additional analyses were conducted. A morphometric analysis of the mandible indicated the Valais race is morphologically as distinct from neighbouring chromosome races ofS. araneus as from other relatedSorex species. In a phylogeny based on complete mitochondrial DNA cytochromeb gene sequences, the Valais race clearly appears as the sister taxon to all other races ofS. araneus. Therefore, the chromosome race Valais ofS. araneus herein is elevated to specific status and the nameSorex antinorii Bonaparte, 1840 is applied.  相似文献   

12.
Karyotypes of the Petchora and Kirillov chromosomal races of the common shrew differ by six Robertsonian metacentrics with monobrachial homology, such that interracial F1 hybrids produce a ring-of-six configuration at meiosis I and are expected to suffer infertility. Mapping of 52 karyotyped individuals by using a unique global positioning system (GPS) revealed that the Kirillov-Petchora hybrid zone is positioned close to the river Mezen, which separated these races, and so may limit the migration of shrews across the contact zone. Although the population density of shrews was found to be markedly different with respect to habitats, the zone runs through a mosaic of habitats that are similar for both the Petchora and the Kirillov sides. This is one of the narrowest chromosomal hybrid zones among those studied in Sorex araneus with a standard cline width of about 1 km. The center of the cline is located on a bank occupied by the Petchora race at a distance of 0.4 km away from a riverine barrier. Interestingly, both the Kirillov race and hybrid individuals were found on a small island in the middle of a river fully flooded each spring. The frequencies of karyotypic variants allow us to consider the zone as an example of a bimodal zone. New Robertsonian and de novo whole-arm reciprocal translocations (WART) chromosomal variants found in the zone could be regarded as evidences of current evolutionary process in chromosomal hybrid zones.  相似文献   

13.
Chromosomal races of the common shrew differ in sets of metacentric chromosomes and on contact may produce hybrids with extraordinarily complex configurations at meiosis I that are associated with reduced fertility. There is an expectation that these may be some of the most extreme tension zones available for study and therefore are of interest as potential sites for reproductive isolation. Here, we analyse one of these zones, between the Novosibirsk race (characterized by metacentrics go, hn, ik, jl, mp and qr) and the Tomsk race (metacentrics gk, hi, jl and mn and acrocentrics o, p, q and r), which form hybrids with a chain-of-nine (CIX) and a chain-of-three (CIII) configuration at meiosis I. At the Novosibirsk-Tomsk hybrid zone, the CIX chromosomes form clines of 8.53 km standardized width on average, whereas the cline for the CIII chromosomes was 52.83 km wide. The difference in these cline widths fits with the difference in meiotic errors expected with the CIX and CIII configuration, and we produce estimates of selection against hybrids with these types of configurations, which we relate to dispersal and age of the hybrid zone. The hybrid zone is located at the isocline at 200 m altitude above sea level; this relationship between the races and altitude is suggested at both coarse and fine scales. This indicates adaptive differences between the races that may in turn have been promoted by the chromosome differences. Thus, the extreme chromosomal divergence between the Novosibirsk and Tomsk may be associated with genic differentiation, but it is still striking that, despite the large chromosomal differences, reproductive isolation between the Novosibirsk and Tomsk races has not occurred.  相似文献   

14.
Karyotyping of the common shrews Sorex araneus from the poorly studied region of the Northwest of Russia revealed the belonging of individuals to two chromosomal races, Lemi and St. Petersburg. The Lemi race, previously known only from Finland, was discovered for the first time on the territory of Russia and thus replenished the list of S. araneus chromosomal races that are distributed within the Russian part of the species range (27 races out of 74 known in the whole species range at the moment). The studied individuals showed a high level of chromosomal polymorphism, caused by Rb translocations.  相似文献   

15.
This paper summarizes a series of studies on chromosomal geography of the common shrew Sorex araneusL. in Siberia and the Southern Urals. Chromosomal races inhabiting the Southern Urals and the Western Siberian Plain sequentially replace each other in the latitudinal direction. In this region, karyotypes of each two adjacent races differ from each other by a single whole-arm reciprocal translocation. In the Eastern Siberian and Altai branches, the neighboring races differ mainly in the number or set of metacentric chromosomes. Analysis of the race distribution in the common shrew in the context of paleoecology of the glacial and postglacial period allowed us to reconstruct the sequence of events leading to the establishment of the present-day structure of the species S. araneus.  相似文献   

16.
New G-banded karyotypes from populations of the common shrew Sorex araneus Linnaeus, 1758 provide a clearer picture of the distribution of chromosome races in central Europe. As expected according to their occurrence in neighbouring countries, the Jutland (kq, no), Laska (k/o) and Drnholec (ko, nr) races are also found in Germany. A new chromosome race “Rügen” (kq) is described from this Baltic Island. Together with the previously recorded races Ulm and Mooswald (kr), six chromosome races are now known from Germany. The resulting distribution pattern is characterized by high frequencies of different race-specific metacentrics at the periphery of the country and clines with decreasing frequencies towards the centre which is occupied by the Ulm race. This race is acrocentric for all chromosome arms involved in the observed race-specific fusions and represents a buffer between the surrounding, more metacentric races. According to the present distribution of these metacentrics, a scenario for the postglacial recolonization of central Europe by S.araneus populations on three different routes is proposed: from the east along the northern slopes of the Carpathian Arc, from the south-east along the Danube Valley and from the south-west through the Upper Rhine Valley.  相似文献   

17.
Two chromosome races of Sorex araneus were found in southern and western Switzerland. It is suggested they were issued by introgression of different sets of metacentrics, coming respectively from north-east and south, into a primitive “acrocentric” population which recolonized the country from the west after the last glaciation.  相似文献   

18.
The shrews of the Sorex araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorex granarius is generally considered ancestral to those of Sorex coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.  相似文献   

19.
Using the data of karyological analysis, the phylogenetic relationships of Caucasian shrew Sorex satunini and the cryptic species of superspecies Sorex araneus were examined. In the population of Sorex satunini from the plain of North Ciscaucasia two deeply radiated cytochrome b genes (A and B) were identified. Genetic distance between haplotype A and B groups constituted 0.0675 ± 0.008, which is higher than any distance in superspecies S. araneus. Possible introgression of type B haplotypes from the populations of the evolutionary lineage S. subaraneus-S. araneus in Pleistocene and the time of the appearance of the chromosomal polymorphism of S. araneus is discussed. Our results show that the use of only one mitochondrial marker can lead to false conclusions on taxonomic diversity.  相似文献   

20.
Black rats are of outstanding interest in parasitology and infective disease analysis. We used chromosome paints from both the mouse(Mus musculus) and the Norway rat(Rattus norvegicus) to characterize the genome of two Black rat subspecies from Italy. Both subspecies have two large metacentrics (n. 1, 4) not present in the Norway rat (2n = 42).Rattus rattus rattus has a diploid number of 2n = 38, whileRattus rattus frugivorous has two small metacentric “supernumerary” or B chromosomes for a diploid number of 2n = 38 + 2B. The 21 mouse paints gave 38 signals on theR. r. rattus karyotype and 39 signals in theR. r. frugivorous karyotype. The two metacentrics, not present inR. norvegicus, were hybridized by mouse 16/1/17 and mouse 4/10/15. These chromosomes are homologous to: RRA1 = RNO 5/7, and RRA4 = RNO 9/11 and not “4/7” and “11/12” as previously reported. Furthermore, the synteny of Chr 13 of theR. r. frugivorous withR. norvegicus Chr 16 and mouse Chrs 8/14 is not complete, because there is a small pericentromeric insertion of RNO Chr 18 (mouse Chr 18). If we consider only the two metacentrics, RRA1 and RRA4, the principal differences betweenR. norvegicus andR. rattus, then we can propose the derived synteny of 124 genes in the black rat. A comparison of the Z index between rats and mice shows an acceleration of genomic evolution among genus, species, and subspecies. The chromosomal differences betweenR. r. rattus xR. r. frugivorous suggest that they may be classified as different species because hybrids would produce 50% unbalanced gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号