首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.  相似文献   

2.
The GIY-YIG nuclease domain has been identified in homing endonucleases, DNA repair and recombination enzymes, and restriction endonucleases. The Type II restriction enzyme Eco29kI belongs to the GIY-YIG nuclease superfamily and, like most of other family members, including the homing endonuclease I-TevI, is a monomer. It recognizes the palindromic sequence 5′-CCGC/GG-3′ (“/” marks the cleavage position) and cuts it to generate 3′-staggered ends. The Eco29kI monomer, which contains a single active site, either has to nick sequentially individual DNA strands or has to form dimers or even higher-order oligomers upon DNA binding to make a double-strand break at its target site. Here, we provide experimental evidence that Eco29kI monomers dimerize on a single cognate DNA molecule forming the catalytically active complex. The mechanism described here for Eco29kI differs from that of Cfr42I isoschisomer, which also belongs to the GIY-YIG family but is functional as a tetramer. This novel mechanism may have implications for the function of homing endonucleases and other enzymes of the GIY-YIG family.  相似文献   

3.
REBASE - restriction enzymes and methylases   总被引:1,自引:0,他引:1  
REBASE is a comprehensive database of information about restriction enzymes and related proteins. It contains published and unpublished references, recognition and cleavage sites, isoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. DNA methyltransferases, homing endonucleases, nicking enzymes, specificity subunits and control proteins are also included. Most recently, putative DNA methyltransferases and restriction enzymes, as predicted from analysis of genomic sequences, are also listed. The data is distributed via Email, ftp (ftp.neb.com), and the Web (http://rebase.neb.com).  相似文献   

4.
5.
Homing endonucleases are enzymes that catalyze the highly sequence-specific cleavage of DNA. We have developed an in vivo selection in Escherichia coli that links cell survival with homing endonuclease-mediated DNA cleavage activity and sequence specificity. Using this selection, wild-type and mutant variants of three homing endonucleases were characterized without requiring protein purification and in vitro analysis. This selection system may facilitate the study of sequence-specific DNA cleaving enzymes, and selections based on this work may enable the evolution of homing endonucleases with novel activities or specificities.  相似文献   

6.
Homing endonucleases are enzymes that catalyze DNA sequence specific double-strand breaks and can significantly stimulate homologous recombination at these breaks. These enzymes have great potential for applications such as gene correction in gene therapy or gene alteration in systems biology and metabolic engineering. However, homing endonucleases have a limited natural repertoire of target sequences, which severely hamper their applications. Here we report the development of a highly sensitive selection method for the directed evolution of homing endonucleases that couples enzymatic DNA cleavage with the survival of host cells. Using I-SceI as a model homing endonuclease, we have demonstrated that cells with wild-type I-SceI showed a high cell survival rate of 80–100% in the presence of the original I-SceI recognition site, whereas cells without I-SceI showed a survival rate <0.003%. This system should also be readily applicable for directed evolution of other DNA cleavage enzymes.  相似文献   

7.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.  相似文献   

8.
9.
Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca2+) and catalytic ions (Mg2+). We have also analyzed the metal dependence of DNA cleavage using Mg2+ ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates.  相似文献   

10.
Structural and functional characteristics of homing endonucleases   总被引:3,自引:0,他引:3  
Mobile genetic elements constitute a remarkably diverse group of nonessential selfish genes that provide no apparent function to the host. These selfish genes have been implicated in host extinction, speciation and architecture of genetic systems. Homing endonucleases, encoded by the open reading frames embedded in introns or inteins of mobile genetic elements, possess double-stranded DNA-specific endonuclease activity. They inflict sequence-specific double-strand breaks at or near the homing site in intron- or intein-less allele. Subsequently, through nonreciprocal exchange the insertion sequence (intron or intein) is transferred from an intein- or intron-containing allele to an intein- or intron-less allele. The components of host double-strand break repair pathway are thought to finish the "homing" process. Several lines of evidence suggest that homing endonucleases are capable of promoting transposition into ectopic sites within or across genomes for their survival as well as dispersal in natural populations. The occurrence of inteins at high frequencies serves as instructive models for understanding the mechanistic aspects of the process of homing and its evolution. This review focuses on genetic, biochemical, structural, and phylogenetic aspects of homing endonucleases, and their comparison with restriction endonucleases.  相似文献   

11.
Mobile genetic elements constitute a remarkably diverse group of nonessential selfish genes that provide no apparent function to the host. These selfish genes have been implicated in host extinction, speciation and architecture of genetic systems. Homing endonucleases, encoded by the open reading frames embedded in introns or inteins of mobile genetic elements, possess double-stranded DNA-specific endonuclease activity. They inflict sequence-specific double-strand breaks at or near the homing site in intron- or intein-less allele. Subsequently, through nonreciprocal exchange the insertion sequence (intron or intein) is transferred from an intein- or intron-containing allele to an intein- or intron-less allele. The components of host double-strand break repair pathway are thought to finish the “homing” process. Several lines of evidence suggest that homing endonucleases are capable of promoting transposition into ectopic sites within or across genomes for their survival as well as dispersal in natural populations. The occurrence of inteins at high frequencies serves as instructive models for understanding the mechanistic aspects of the process of homing and its evolution. This review focuses on genetic, biochemical, structural, and phylogenetic aspects of homing endonucleases, and their comparison with restriction endonucleases.  相似文献   

12.
Binary vectors are an indispensable component of modern Agrobacterium tumefaciens-mediated plant genetic transformation systems. A remarkable variety of binary plasmids have been developed to support the cloning and transfer of foreign genes into plant cells. The majority of these systems, however, are limited to the cloning and transfer of just a single gene of interest. Thus, plant biologists and biotechnologists face a major obstacle when planning the introduction of multigene traits into transgenic plants. Here, we describe the assembly of multitransgene binary vectors by using a combination of engineered zinc finger nucleases (ZFNs) and homing endonucleases. Our system is composed of a modified binary vector that has been engineered to carry an array of unique recognition sites for ZFNs and homing endonucleases and a family of modular satellite vectors. By combining the use of designed ZFNs and commercial restriction enzymes, multiple plant expression cassettes were sequentially cloned into the acceptor binary vector. Using this system, we produced binary vectors that carried up to nine genes. Arabidopsis (Arabidopsis thaliana) protoplasts and plants were transiently and stably transformed, respectively, by several multigene constructs, and the expression of the transformed genes was monitored across several generations. Because ZFNs can potentially be engineered to digest a wide variety of target sequences, our system allows overcoming the problem of the very limited number of commercial homing endonucleases. Thus, users of our system can enjoy a rich resource of plasmids that can be easily adapted to their various needs, and since our cloning system is based on ZFN and homing endonucleases, it may be possible to reconstruct other types of binary vectors and adapt our vectors for cloning on multigene vector systems in various binary plasmids.  相似文献   

13.
Nicking endonucleases are a new type of enzymes. Like restriction endonucleases, they recognize short specific DNA sequence and cleave DNA at a fixed position relatively to the recognition sequence. However, unlike restriction endonucleases, nicking endonucleases cleave only one predetermined DNA strand. Until recently, nicking endonucleases were suggested to be naturally mutated restriction endonucleases which had lost their ability to dimerize and as a result the ability to cleave the second strand. We have shown that nicking endonucleases are one of the subunits of heterodimeric restriction endonucleases. Mechanisms used by various restriction endonucleases for double-stranded cleavage, designing of artificial nicking endonucleases on the basis of restriction endonucleases, and application of nicking endonucleases in molecular biology are reviewed.  相似文献   

14.
The archaeal intron-encoded homing enzymes I-PorI and I-DmoI belong to a family of endonucleases that contain two copies of a characteristic LAGLIDADG motif. These endonucleases cleave their intron- or intein- alleles site-specifically, and thereby facilitate homing of the introns or inteins which encode them. The protein structure and the mechanism of DNA recognition of these homing enzymes is largely unknown. Therefore, we examined these properties of I-PorI and I-DmoI by protein footprinting. Both proteins were susceptible to proteolytic cleavage within regions that are equidistant from each of the two LAGLIDADG motifs. When complexed with their DNA substrates, a characteristic subset of the exposed sites, located in regions immediately after and 40-60 amino acids after each of the LAGLIDADG motifs, were protected. Our data suggest that the enzymes are structured into two, tandemly repeated, domains, each containing both the LAGLIDADG motif and two putative DNA binding regions. The latter contains a potentially novel DNA binding motif conserved in archaeal homing enzymes. The results are consistent with a model where the LAGLIDADG endonucleases bind to their non-palindromic substrates as monomeric enzymes, with each of the two domains recognizing one half of the DNA substrate.  相似文献   

15.
Homing endonucleases are highly specific enzymes, capable of recognizing and cleaving unique DNA sequences in complex genomes. Since such DNA cleavage events can result in targeted allele-inactivation and/or allele-replacement in vivo, the ability to engineer homing endonucleases matched to specific DNA sequences of interest would enable powerful and precise genome manipulations. We have taken a step-wise genetic approach in analyzing individual homing endonuclease I-CreI protein/DNA contacts, and describe here novel interactions at four distinct target site positions. Crystal structures of two mutant endonucleases reveal the molecular interactions responsible for their altered DNA target specificities. We also combine novel contacts to create an endonuclease with the predicted target specificity. These studies provide important insights into engineering homing endonucleases with novel target specificities, as well as into the evolution of DNA recognition by this fascinating family of proteins.  相似文献   

16.
Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications.  相似文献   

17.
MOTIVATION: Restriction endonucleases (REases) and homing endonucleases (HEases) are biotechnologically important enzymes. Nearly all structurally characterized REases belong to the PD-(D/E)XK superfamily of nucleases, while most HEases belong to an unrelated LAGLIDADG superfamily. These two protein folds are typically associated with very different modes of protein-DNA recognition, consistent with the different mechanisms of action required to achieve high specificity. REases recognize short DNA sequences using multiple contacts per base pair, while HEases recognize very long sites using a few contacts per base pair, thereby allowing for partial degeneracy of the target sequence. Thus far, neither REases with the LAGLIDADG fold, nor HEases with the PD-(D/E)XK fold, have been found. RESULTS: Using protein fold recognition, we have identified the first member of the PD-(D/E)XK superfamily among homing endonucleases, a cyanobacterial enzyme I-Ssp6803I. We present a model of the I-Ssp6803I-DNA complex based on the structure of Type II restriction endonuclease R.BglI and predict the active site and residues involved in specific DNA sequence recognition by I-Ssp6803I. Our finding reveals a new unexpected evolutionary link between HEases and REases and suggests how PD-(D/E)XK nucleases may develop a 'HEase-like' way of interacting with the extended DNA sequence. This in turn may be exploited to study the evolution of DNA sequence specificity and to engineer nucleases with new substrate specificities.  相似文献   

18.
Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.  相似文献   

19.
The search for optimal variants of restriction endonucleases immobilization was begun recently. For some enzymes immobilization was successful due to the presence of covalent bonds on CNBr-sepharose (EcoRI, BamHI, HindIII, TaqI, PaeI, SalI, PvuII). For the enzymes EcoRI, BamHI and HindIII it was due to hydrophobic interaction with triethyl-agarose (triethyl-triphenylmethane). The high yield (up to 80%) of enzymatic activity has been obtained for small number of restriction endonucleases. In the experiments of several amino acid residues modification and immobilization of restriction endonucleases the participation of lysine, arginine, glutamic acid and SH- or S-S-groups in the catalysis and (or) binding of these enzymes with DNA has been shown. The restriction endonucleases immobilization experiments and research of enzymes active centre enrich each other and are very interesting for their use in molecular biology and deepening our knowledge of protein-nucleic interactions.  相似文献   

20.
The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号