首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein complex, troponin-tropomyosin, which is bound to the thin actin filament, regulates muscle contraction and relaxation. In the absence of Ca2+ the troponin-tropomyosin complex causes muscle to relax, whereas in the presence of Ca2+, contraction occurs. Biochemical studies have shown that the troponin-tropomyosin complex has a dual effect on the interaction of the myosin cross-bridge with actin. In the presence of ATP, troponin-tropomyosin strongly inhibits the actomyosin ATPase activity, whereas in the absence of ATP, troponin-tropomyosin confers positive cooperativity on the binding of myosin to actin. We have proposed a simple model [Hill, T. L., Greene, L. E., and Eisenberg, E. (1980)Proc. Natl. Acad. Sci. USA 77, 3186–3190] that accounts for these biochemical observations by postulating that the troponin-tropomyosin-actin complex (regulated actin) can occur in two forms, a turned-on form and a turned-off form. This model defines several cooperativity parameters that describe the behavior of regulated actin. In previous studies we have determined the values of these parameters by studying the cooperative binding of myosin to regulated actin in the absence of ATP. In the present study we also used ATPase and fluorescence measurements to determine these cooperativity parameters. Assuming that the fluorescence change occurs only when two adjacent tropomyosin units shift into the turned-on form, our results show that all three methods give the same values for the cooperativity parameters. These results confirm the prediction of our model that a regulated actin unit that is turned off not only binds S-1 weakly but is also unable to activate the actomyosin ATPase activity.  相似文献   

2.
Smooth muscle contraction is controlled in part by the state of phosphorylation of myosin. A recently discovered actin and calmodulin-binding protein, named caldesmon, may also be involved in regulation of smooth muscle contraction. Caldesmon cross-links actin filaments and also inhibits actin-activated ATP hydrolysis by myosin, particularly in the presence of tropomyosin. We have studied the effect of caldesmon on the rate of hydrolysis of ATP by skeletal muscle myosin subfragment-1, a system in which phosphorylation of the myosin is not important in regulation. Caldesmon is a very effective inhibitor of ATP hydrolysis giving up to 95% inhibition. At low ionic strength (approximately 20 mM) this effect does not require smooth muscle tropomyosin, whereas at high ionic strength (approximately 120 mM) tropomyosin enhances the inhibitory activity of caldesmon at low caldesmon concentrations. Cross-linking of actin is not essential for inhibition of ATP hydrolysis to occur since at high ionic strength there is very little cross-linking as determined by a low speed sedimentation assay. Under all conditions examined, the decrease in the rate of ATP hydrolysis is accompanied by a decrease in the binding of myosin subfragment-1 to actin. Furthermore, caldesmon weakens the equilibrium binding of myosin subfragment-1 to actin in the presence of pyrophosphate. We conclude that caldesmon has a general weakening effect on the binding of skeletal muscle myosin subfragment-1 to actin and that this weakening in binding may be responsible for inhibition of ATP hydrolysis.  相似文献   

3.
It was previously shown that a one-dimensional Ising model could successfully simulate the equilibrium binding of myosin S1 to regulated actin filaments (T. L. Hill, E. Eisenberg and L. Greene, Proc. Natl. Acad. Sci. U.S.A. 77:3186-3190, 1980). However, the time course of myosin S1 binding to regulated actin was thought to be incompatible with this model, and a three-state model was subsequently developed (D. F. McKillop and M. A. Geeves, Biophys. J. 65:693-701, 1993). A quantitative analysis of the predicted time course of myosin S1 binding to regulated actin, however, was never done for either model. Here we present the procedure for the theoretical evaluation of the time course of myosin S1 binding for both models and then show that 1) the Hill model can predict the "lag" in the binding of myosin S1 to regulated actin that is observed in the absence of Ca++ when S1 is in excess of actin, and 2) both models generate very similar families of binding curves when [S1]/[actin] is varied. This result shows that, just based on the equilibrium and pre-steady-state kinetic binding data alone, it is not possible to differentiate between the two models. Thus, the model of Hill et al. cannot be ruled out on the basis of existing pre-steady-state and equilibrium binding data. Physical mechanisms underlying the generation of the lag in the Hill model are discussed.  相似文献   

4.
Binding of magnesium to myosin subfragment-1 ATPase   总被引:1,自引:0,他引:1  
Tyr 180 of chicken breast muscle alkali light chain A1 was nitrated with tetranitromethane. The nitroA1 was incorporated into chicken breast muscle subfragment-1 (S-1) by exchange with the intrinsic alkali light chain. In the presence of adenylylimidodiphosphate (AMPPNP) or ADP, the S-1 containing nitroA1 showed a difference visible absorption spectrum by Mg2+ or Ca2+. The difference spectrum has a trough around 435 nm, indicating a blue shift of the absorption spectrum due to the nitrophenol chromophore of the modified A1. The plot of delta A at 435 nm versus concentration of free Mg2+ fitted a single binding curve, independent of the total concentration of AMPPNP. These results reveal that free Mg2+ binds to the active site of S-1 ATPase, but not as Mg-AMPPNP complex. The dissociation constants of magnesium from S-1 complex were different with the two nucleotides and were 1.25 X 10(-8) M and 1.24 X 10(-7) with AMPPNP and ADP, respectively. The difference spectrum was also obtained in the presence of ATP. The delta epsilon value after adding ATP changed with the ATPase reaction. The steady state rate of S-1 ATPase was measured at various concentrations of free Mg2+. The dissociation constant of magnesium from the steady state complex, EPADP(a), was estimated as 6 X 10(-8) M. These results suggest that the affinity of magnesium at the active site of ATPase changes with the intermediate states of ATPase reaction. The affinity of calcium was lower than that of magnesium.  相似文献   

5.
Bundling of myosin subfragment-1-decorated actin filaments   总被引:1,自引:0,他引:1  
We have reported previously that rabbit skeletal myosin subfragment-1 (S-1) assembles actin filaments into bundles. The rate of this reaction can be estimated roughly from the initial rate (Vo) of the accompanying turbidity increase ("super-opalescence") of the acto-S-1 solution. Vo is a function of the molar ratio (r) of S-1 to actin, with a peak at r = 1/6 to 1/7 and minimum around r = 1. In the present paper we report a different type of opalescence (we call it "hyper-opalescence") of acto-S-1 solutions, which also resulted from bundle formation. Adjacent filaments in the bundles had a distance of approximately 180 A. Hyper-opalescence occurred at r approximately equal to 1 when KCOOCH3 was used instead of KCl. By comparing the effects of ADP, epsilon-ADP, tropomyosin or ionic strength upon the super- and hyper-opalescence, we concluded that the two types of S-1-induced actin bundling had different molecular mechanisms. The hyper-opalescence type of bundling seemed to be induced by S-1, which was not complexed with actin in the manner of conventional rigor binding. The presence of the regulatory light chain did not affect hyper-opalescence (or super-opalescence), since there were no significant differences between papain S-1 and chymotryptic S-1 with respect to these phenomena.  相似文献   

6.
The heavy chain of myosin subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96 K. It was split into 26 K, 50K, and 21 K fragments on trypsin treatment. The effect of actin binding on the susceptibilities of the junctions between 26 K and 50 K and between 50 K and 21 K, and on that of alkali light chain 1 to trypsin was studied. The addition of actin increased the viscosity of the solution, and the apparent activity of trypsin decreased. We estimated this decrease as 35% by measuring the degradation of gamma-globin heavy chain, which is known not to interact with actin and subfragment-1 but is known to be susceptible to trypsin, in actin-subfragment-1 solution. Taking this value into consideration, we concluded that the 26 K-50 K junction became 5 times more and the 50 K-21 K junction became 3 times less susceptible to tryptic attack upon the binding of actin. We also observed that alkali light chain 1 became resistant to trypsin upon the binding of actin to subfragment-1. The relation between this conformational change in subfragment-1 and the cyclic interaction of subfragment-1 with actin and ATP is discussed.  相似文献   

7.
The K+-EDTA-activated ATPase activity of chymotryptic myosin subfragment-1 (S-1) decreased by 85-90% when S-1 was incubated over a 2-h period at 35 degrees C. Addition of F-actin, ATP, or ATP analogs, such as ADP or PPi, to S-1 before incubation at 35 degrees C prevented the loss of ATPase activity. The decrease in ATPase activity was also accompanied by changes in tryptic sensitivity. Instead of the normal peptide pattern--which is comprised of three heavy chain fragments (27K, 50K, and 20K)--only two fragments (27K and 20K) appeared on the sodium dodecyl sulfate-gel electrophoregram after limited tryptic digestion of thermally treated S-1. Addition of any ligand--e.g. ATP, ADP, pyrophosphate, or actin--which prevented the loss of ATPase activity during incubation at 35 degrees C also prevented the observed change in the tryptic peptide pattern of S-1. Tryptic digested S-1, whose heavy chain has been cleaved to 27K, 50K, and 20K fragments, also lost its ATPase activity upon mild heat treatment. The heat-treated trypsin-digested S-1 was subjected to a second tryptic digestion, which resulted in the disappearance of the 50K fragment, while the 50K fragment of tryptic S-1 not subjected to heat treatment was not susceptible to additional tryptic hydrolysis. The results indicate that the structural changes, that take place specifically in the 50K region of S-1 upon mild heat treatment, lead to both the loss of the ATPase activity and the changed tryptic sensitivity of S-1.  相似文献   

8.
As is well known, the light scattering intensity of F-actin solutions increases immediately upon formation of the rigor complex with subfragment-1 (S-1). We have found that after the initial rise in scattering, there is a further gradual increase in scattering (we call it "super-opalescence"). Fluorescence and electron microscopic observations of acto-S-1 solutions showed that super-opalescence results from formation of actin filament bundles once S-1 binds to F-actin. The actin bundles possessed transverse stripes with a periodicity of about 350 A, which suggested that in the bundles actin filaments are arranged in parallel register. The rate of the initial process of bundle formation (i.e. side-by-side dimerization) could be approximately estimated by measuring the initial rate of super-opalescence (V0). V0 had a maximum (V0m) at a molar ratio of S-1 to actin of 1;6-1;7, regardless of the actin concentration, pH (6-8.5), Mg2+ concentration (up to 5 mM), or ionic strength (up to 0.3 M KC1). Lower pH, higher Mg2+ concentration, and higher ionic strength increased V0m; V0 was proportional to the square of the actin concentration, regardless of the solution conditions.  相似文献   

9.
Three N-terminal double mutants of beta-actin expressed in the yeast Saccharomyces cerevisiae have been characterized with respect to DNase-I interaction, N-terminal post-translational modification, polymerizability and myosin subfragment-1 binding. The results strongly support earlier suggestions that the acidic residues at the N-terminus of actin are part of the myosin-binding site, while they seem to be of no importance for the other aspects of actin biochemistry tested. The suitability of this expression system for production of recombinant actin in general is discussed.  相似文献   

10.
To determine the reason why the Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin was activated more by actin than that of subfragment-1 prepared with trypsin was and the reason why the former could enhance the polymerization of actin and the latter could not, we digested subfragment-1, prepared with chymotrypsin, with trypsin and examined the actin activated Mg2+-ATPase activity and the ability to polymerize actin. It was found that cleavage of the heavy chain decreased the actin activated Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin but did not affect its ability to polymerize actin. Trypsin attacked the subfragment-1 heavy chain at two sites and produced 26 K, 50 K, and 21 K fragments. From the comparison of the time course of tryptic digestion with that of the decrease in actin activation, it was deduced that cleavage of the 50 K-21 K junction was mainly responsible for the decrease in actin activation. We also measured the length and the amount of F-actin polymerized by the addition of different amounts of subfragment-1. It was found that the amount of F-actin increased with the increase in the amount of subfragment-1 added and that the length of F-actin also increased though slightly. We concluded from the results that subfragment-1 enhanced the polymerization not only by facilitating the nucleus formation but also by strengthening the bond between actin monomers in forming F-actin.  相似文献   

11.
To examine the spatial relationship between SH1 thiol and actin binding site on subfragment-1 surface, we studied the interaction with actin of subfragment-1 whose SH1 was labeled with an iodoacetate derivative of biotin and covered with avidin. Subfragment-1--avidin complex bound F-actin and its Mg2+ ATPase activity was activated by actin. Considering the size and the location of biotin binding site on avidin, our results suggest that SH1 is separated from the actin binding site on subfragment-1 surface by at least 17-20 A.  相似文献   

12.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Nonenzymatic bonding of reducing sugars to subfragment-1 of myosin (S-1) resulted in a reduction in actin-activated S-1 ATPase activity. Fructose caused a greater reduction than glucose. The Km for binding of actin to S-1 was significantly increased with sugar derivatization. In addition, sugar derivatization lowered the ability of S-1 to promote polymerization of G-actin. Western blot analysis demonstrated that glucose was nonenzymatically incorporated into the 50 and 20 kilodalton (kDa) fragments of S-1 with preponderance in the 20-kDa fragment. The reduced affinity of derivatized myosin for actin is indicated by the increased Km, the reduced ability to stimulate actin polymerization, and the positive Western blot reaction in the 20-kDa fragment.  相似文献   

14.
15.
Myosin subfragment-1 from rabbit skeletal muscle was digested by thermolysin at 25 degrees, 12 degrees and 0 degree C. Thermolysin cleaves subfragment-1 heavy chain into two stable fragments, 28 kDa and 70 kDa, aligned in this order from the N-terminus [Applegate, D. & Reisler, E. (1983) Proc. Natl Acad. Sci. USA 80, 7109-7112]. The rate of digestion at 25 degrees C was significantly increased in the presence of MgATP and somewhat less in the presence of MgADP, or magnesium pyrophosphate. This activating effect of the nucleotides was decreased at 12 degrees C and completely eliminated at 0 degrees C. The results can be explained by assuming that there are two subfragment-1 conformers [Shriver, J. W. & Sykes, B. D. (1981) Biochemistry 20, 2004-2012], and that both the addition of ATP or its analogs, and lowering the temperature, shift the conformational equilibrium in the direction that is more susceptible to thermolysin. Actin inhibited thermolysin digestion of subfragment-1 at all three temperatures studied. Actin inhibition can be explained either by shifting the equilibrium of the conformers in the direction of the less susceptible form or by direct interference of actin with the binding of thermolysin to subfragment-1. Actin inhibition of thermolysin digestion also prevailed when subfragment-1 was in a ternary complex with nucleotide and actin, in both the strongly and weakly attached states. Similarly, actin inhibited the digestion of subfragment-1 modified by 4-phenylenedimaleimide [corrected], which also forms a weakly attached complex with actin. No difference could be found in the accessibility of the thermolysin-susceptible site of subfragment-1 at the 28-70 kDa junction in either rigor, strongly or weakly attached states, which indicates the similarity of the structure proximal to this specific site in the three attached states.  相似文献   

16.
The heavy chain of subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96K. The heavy chain was split into 26 K, 50 K, and 21 K fragments by trypsin. When the trypsin-treated subfragment-1 was cross-linked with dimethyl suberimidate, cross-linked products of 26 K, 50 K, and 21 K fragments and of 50 K and 21 K fragments appeared, but there was little cross-linked product of 26 K and 50 K fragments or of 26 K and 21 K fragments. When the cross-linking experiments were carried out in the presence of actin, a new band appeared and the amount of cross-linked product of 26 K, 50 K, and 21 K fragments decreased by about 50%. The molecular weight of the new band was lower than that of the cross-linked product of 26 K, 50 K, and 21 K fragments, and higher than that of the dimer of actin. Based on this and some other results, we suggest that this band represented a cross-linked product of actin and the 50 K fragment. We also suggest that the decrease in the amount of cross-linked product of 26 K, 50 K, and 21 K fragments reflected the conformational change in subfragment-1 due to the binding of actin.  相似文献   

17.
18.
Movements of different areas of polypeptide chains within F-actin monomers induced by S1 or pPDM-S1 binding were studied by polarized fluorimetry. Thin filaments of ghost muscle were reconstructed by adding G-actin labeled with fluorescent probes attached alternatively to different sites of actin molecule. These sites were: Cys-374 labeled with 1,5-IAEDANS, TMRIA or 5-IAF; Lys-373 labeled with NBD-Cl; Lys-113 labeled with Alexa-488; Lys-61 labeled with FITC; Gln-41 labeled with DED and Cys-10 labeled with 1,5-IAEDANS, 5-IAF or fluorescein-maleimid. In addition, we used TRITC-, FITC-falloidin and e-ADP that were located, respectively, in filament groove and interdomain cleft. The data were analysed by model-dependent and model-independent methods (see appendixes). The orientation and mobility of fluorescent probes were significantly changed when actin and myosin interacted, depending on fluorophore location and binding site of actomyosin. Strong binding of S with actin leads to 1) a decrease in the orientation of oscillators of derivatives of falloidin (TRITC-falloidin, FITC-falloidin) and actin-bound nucleotide (e-ADP); 2) an increase in the orientation of dye oscillators located in the "front' surface of the small domain (where actin is viewed in the standard orientation with subdomains 1/2 and 3/4 oriented to the right and to the left, respectively); 3) a decrease in the angles of dye oscillators located on the "back" surface of subdomain-1. In contrast, a weak binding of S1 to actin induces the opposite effects in orientation of these probes. These data suggest that during the ATP hydrolysis cycle myosin heads induce a change in actin monomer (a tilt and twisting of its small domain). Presumably, these alterations in F-actin conformation play an important role in muscle contraction.  相似文献   

19.
M proteins are antiphagocytic molecules on the surface of group A streptococci having physical characteristics similar to those of mammalian tropomyosin. Both are alpha-helical coiled-coil fibrous structures with a similar seven-residue periodicity of nonpolar and charged amino acids. To determine if M protein is functionally similar to tropomyosin we studied the interaction of M protein with F-actin. At low ionic strength, M protein binds to actin weakly with a stoichiometry different from that of tropomyosin. M protein does not compete with tropomyosin for the binding to actin, indicating that it is functionally different from tropomyosin. M protein does compete with myosin subfragment-1 for binding to actin and induces the formation of bundles of actin filaments. The formation of actin aggregates is associated with a sharp reduction in the rate of ATP hydrolysis by subfragment-1. Intact streptococci having M protein on their surface are shown to bind to actin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号