首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Mucin, a major component of mucus, is a highly O-glycosylated, high-molecular-mass glycoprotein extensively involved in the physiology of gastrointestinal mucosa. To detect and characterize mucins derived from site-specific mucous cells, we developed a monoclonal antibody, designated PGM34, by immunizing a mouse with purified pig gastric mucin. The reactivity of PGM34 with mucin was inhibited by periodate treatment of the mucin, but not by trypsin digestion. This suggests that PGM34 recognizes the carbohydrate portion of mucin. To determine the epitope, oligosaccharide-alditols obtained from pig gastric mucin were fractionated by successive gel-filtration, ion-exchange, and normal-phase HPLC, and tested for reactivity with PGM34. Two purified oligosaccharide-alditols that reacted with PGM34 were obtained. Their structures were determined by NMR spectroscopy as Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta1-6(Fucalpha1-2Galbeta1-3)GalNAc-ol and Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta1-6(Galbeta1-3)GalNAc-ol. None of the defucosylated or desulfated forms of these oligosaccharides reacted with PGM34. Thus, the epitope of PGM34 was determined as the Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta- sequence. Immunohistochemical examination of rat gastrointestinal tract showed that PGM34 stained surface mucous cells close to the generative cell zone in the gastric fundus and goblet cells in the small intestine, but only slightly stained antral mucous cells in the stomach. These data, taken together, show that PGM34 is a very useful tool for elucidating the role of mucins with characteristic sulfated oligosaccharides.  相似文献   

2.
The monoclonal antibody 5HL-5D11-D10 to antigen D10 identifies a cell lineage that is restricted to certain tissues of the human foregut. We investigated the tissue distribution of antigen D10 in mammals, birds, reptiles, amphibians and fish by immunohistochemical staining. Tissue from human and each of ten other mammalian species showed staining of gastric mucous neck cells and glands of the cardia and antrum, Brunner's glands, peribiliary glands and periductal glands of the pancreas. Six of the mammalian species also expressed antigen D10 in mucosa of the larger bronchi, and five expressed it to varying degree in small bowel distal to the duodenum and in colon (three of these five species). Antigen was not detected in any of the three species of bird studied. Both reptiles and amphibians showed strong staining for antigen D10 in the gastric mucous neck cells and pyloric glands, and in a subpopulation of secretory cells in the oesophagus, with the amphibian also expressing antigen in some epithelial cells of the mouth and lung. Although absent from two species of bony fish, antigen D10 was expressed by small groups of epithelial cells of the intestine of a shark, and generally by the epithelial and connective tissue cells of the gut and gills, and hepatocytes of one species of ray. The presence of antigen D10 in different tissues and species was confirmed by both an indirect ELISA and immunoblot analysis of tissue extracts. Our observations suggest that the D10 epitope characterises a subpopulation of mucus-secreting cells, predominantly of the foregut and associated organs, which has been conserved throughout terrestrial vertebrate evolution.  相似文献   

3.
Using a panel of synthetic oligosaccharides attached to a polyacrylamidecarrier, the epitope of monoclonal antibody F2, evoked to highMr salivary mucins, was mapped to the SO3-3Galß1-3GlcNAc-moiety of the sulfo-Lea antigen. Using immunochemical techniques,the expression of the F2-epitope was investigated in a numberof different isolated human mucin species, as well as in humanand rat tissue specimens. The mAb F2 bound to high Mr salivarymucins, cervical mucins, colon mucins and gallbladder mucins,but not to low Mr salivary mucins nor to gastric mucins. Immunohistochemicalscreening of human tissues with mAb F2 revealed a positive reactionwith a number of epithelia, including the (sero)mucous salivaryglands, the goblet cells of the colon, submucosal glands ofthe lung, the lining epithelium of cervical and esophageal glands,the suprabasal skin keratinocytes, and Hassall's corpusclesof the thymus. No staining was found in normal breast, pancreas,small intestine, spleen, and lymph nodes. Normal gastric glandswere negative, but gastric intestinal metaplastic glands stronglystained with the antibody. In rat tissues, mAb F2 labeled epithelialcells of salivary glands, colon and stomach. In addition toepithelial cells, extracellular matrix components in rat thymusand skin were labeled by mAb F2. No labeling of erythrocytes,granulocytes, lymphocytes or bone marrow cells was found byFACScan analysis. The present data shows a tissue specific distributionof the F2-epitope in cells from the epithelial lineage in humanand rat. epithelial tissue sulfo-Lewisa mucins mAbs immunohistochemistry  相似文献   

4.
The localization of neutral mucin and acidic mucins in both control and fasted rat gastric fundic mucosa were examined by microscopic and electron microscopic histochemical methods. By Carnoy's fixation, the surface mucous coat of the control rat gastric fundic mucosa was found to be composed of alternating layers of acidic mucins and neutral mucin, indicating the synchronous and cyclic secretions of them. In many gastric pits of the fundic glands, the acidic mucins were found to spring out from the deep foveolar regions like volcanoes. This phenomenon may suggest that the acidic mucins play a fundamental role in protecting the pit cells against HCl during its passage, and the layers of neutral mucin and acidic mucins in the surface coat is the safeguard against the HCl and digestive enzymes in the gastric lumen. In the fasting rat gastric fundic mucosa, the acidity and the amount of the gastric juice were markedly decreased, indicating the suppressed secretions of mucins and HCl. The decreased production of sulfomucin was directly demonstrated by 35SO4-autoradiography. Many mucous neck cells existing in close association with the parietal cells were ballooned due to accumulation of alcian blue (AB)-positive but high iron-diamine (HID)-negative sialomucin, which was not demonstrable in the control. The secretory granules of sialomucin contained in the ballooned mucous neck cells were positively stained ultrastructurally with cacodylate-ferric colloid to stain acid mucopolysaccharides.  相似文献   

5.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
Infections with the parasitic helminth, Nippostrongylus brasiliensis, cause changes in rat small intestinal goblet cell mucin, particularly in the peripheral sugar residues of oligosaccharide. These changes may correlate with expulsion. In this study, we examined changes in mucin oligosaccharides caused by primary infection and reinfection with N. brasiliensis, using two monoclonal antibodies, HCM31 and PGM34, that react with sialomucin and sulfomucin, respectively. Enzyme-linked immunosorbent assay of jejunal mucins showed that the relative reactivity of mucins with HCM31, but not PGM34, increased up to 16 days after primary infection and 6 days after reinfection, the times when the worms were expelled from the rats. Immunohistochemical studies confirmed that goblet cells stained with HCM31 greatly increased at the time of worm expulsion. These results indicate that the marked increase observed in HCM31-reactive sialomucins may be related to expulsion of the worms.  相似文献   

8.
The human salivary mucins MG1 and MG2 are well characterized biochemically and functionally. However, there is disagreement regarding their cellular and glandular sources. The aim of this study was to define the localization and distribution of these two mucins in human salivary glands using a postembedding immunogold labeling method. Normal salivary glands obtained at surgery were fixed in 3% paraformaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M or LR Gold resin. Thin sections were labeled with rabbit antibodies to MG1 or to an N-terminal synthetic peptide of MG2, followed by gold-labeled goat anti-rabbit IgG. The granules of all mucous cells of the submandibular and sublingual glands were intensely reactive with anti-MG1. No reaction was detected in serous cells. With anti-MG2, the granules of both mucous and serous cells showed reactivity. The labeling was variable in both cell types, with mucous cells exhibiting a stronger reaction in some glands and serous cells in others. In serous granules, the electron-lucent regions were more reactive than the dense cores. Intercalated duct cells near the acini displayed both MG1 and MG2 reactivity in their apical granules. In addition, the basal and lateral membranes of intercalated duct cells were labeled with anti-MG2. These results confirm those of earlier studies on MG1 localization in mucous cells and suggest that MG2 is produced by both mucous and serous cells. They also indicate differences in protein expression patterns among salivary serous cells.  相似文献   

9.
We prepared intermediate filaments from the nervous system of several different species, representing mammals, birds and reptiles. These were examined using a panel of polyclonal and monoclonal antibodies originally raised against pig or rat neurofilament proteins. All species studied possessed a single major protein of apparent molecular weight between 68 K and 75 K immunologically related to the lowest molecular weight rat and pig neurofilament protein. All birds and mammals possessed two proteins immunologically related respectively to the pig and rat middle and high molecular weight neurofilament proteins. These data show that the neurofilament triplet proteins represent an evolutionarily conserved three member protein family in birds and mammals, and allow us to suggest a new nomenclature for these three homologous proteins: "H" for the heaviest subunit, "M" for the middle subunit and "L" for the lightest subunit. We found that many monoclonal antibodies stained both the H- and M-proteins of all mammalian and avian species examined, suggesting a close immunological relatedness between these two proteins. The reptiles examined appeared to have only one high molecular weight protein, which was immunologically related to both of the high molecular weight mammalian and avian neurofilament proteins. We also noted a curious situation in neurofilament preparations derived from cows. Both the highest and the middle cow neurofilament proteins were stained by all antibodies which were specific solely for the high molecular weight protein in other species.  相似文献   

10.
Antibodies to histamine were used to examine the localization of the amine in cells of the stomach and upper small intestine of a great variety of species, including cartilaginous and bony fish, amphibia, reptiles (lizard), birds (chicken) and a large number of mammals. In all species gastric histamine was localized in endocrine cells (invariably found in the epithelium) and mast cells (usually with an extra-epithelial localization). The endocrine cells were identified as such by immunostaining with antibodies to chromogranin A and the mast cells were identified by toluidine blue staining. Histamine-immunoreactive endocrine cells were found almost exclusively in the acid-producing part of the stomach; only rarely were such cells observed in the pyloric gland area. They were fairly numerous in the gastric mucosa of the two subclasses of fish as well as in the amphibia and reptile species studied. Here, the majority of the histamine-immunoreactive endocrine cells seemed to have contact with the gastric lumen (open type cells) and were located in the surface epithelium (certain fish only) or together with mucous neck cells at the bottom of the pits. In the chicken, histamine-immunoreactive endocrine cells were numerous and located peripherally in the deep compound glands. They were without contact with the lumen (closed type) and had long basal extensions ("paracrine" appearance), running close to the base of the oxyntic-peptic cells. In mammals, the number of histamine-immunoreactive endocrine cells in the stomach varied greatly. They were particularly numerous in the rat and notably few in the dog, monkey and man. In all mammals, the histamine-immunoreactive endocrine cells were of the closed type and located basally in the oxyntic glands. They often had a "paracrine" appearance with long basal processes. Histamine-storing mast cells, finally, were few in both subclasses of fish as well as in the amphibian species and in the lizard. They were fairly numerous in chicken proventriculus (beneath the surface epithelium), few in the oxyntic mucosa of mouse, rat and hamster, moderate in number in hedgehog, guinea-pig, rabbit, pig and monkey, and numerous in cat, dog and man.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Summary A histochemical study was carried out on the glycoconjugates of the nasal mucosa of rat and guinea pig using conventional techniques and peroxidase-labelled lectins. Both the respiratory mucosa and neuroepithelium were studied. Sulphate and sialic acid groups were found in the mucous layer of the neuroepithelia, Bowman's glands and goblet cells. In contrast, the nasal glands did not possess these groups, and only a few showed neutral mucins. Carbohydrate residues were more numerous in the acini of the Jacobson glands. Thus, the nasal glands in the rat and guinea pig are probably of a serous type because of the scarcity of carbohydrate residues.  相似文献   

12.
Spirochetes are structurally unique microorganisms found in the gastrointestinal tracts of most mammals. In an attempt to determine the ecological status of these bacteria, enumeration and distribution of morphologically distinct spirochetes were studied in the tracts of conventional laboratory rats. Five different types were seen to colonize infant rats between 19 and 26 days of age and subsequently to form stable communities in all 15 adults examined. Two types were found predominantly in lumen contents of the large bowel. The other three were consistently seen in the mucous blanket, attached to enterocyte surfaces or deep in the glands of the cecum and proximal colon. One type inhabiting the mucosal environment was also seen to pass into and through epithelial cells with no detectable host response. We conclude that spirochetes fulfill all the criteria for autochthonicity to the rat gastrointestinal tract.  相似文献   

13.
EGFR activation has been related to an increase in synthesis and secretion of mucins in epithelial cells, so that the use of EGFR tyrosine kinase inhibitors has been proposed in the therapy of mucin hypersecretory diseases. In this paper, we describe the ultrastructural localisation of EGFR in the mucous elements of human major and minor salivary glands and relate it to mucin distribution. A post-embedding immunogold staining method has been applied to normal surgical samples of human submandibular, sublingual, and labial glands, using a mouse monoclonal antibody specific for the intracellular domain of human EGFR. In mucous cells of all the glands examined, specific reactivity was detected in the cytoplasmic basolateral portions and near the mucous droplets, but not on cell surfaces. Since this pattern of labelling must be related to the internalisation process of the ligand-GFR complex, our results support the hypothesis that EGFR activation takes place in mucous cells and affects mucin production in human salivary glands.  相似文献   

14.
The obtained results show that secretory elements of the tongue integuments submerged to the depth of the organ. It was accompanied by a formation and complication of terminal portions of the glands and their secretory pathways. In the process of evolution there occurred a divergence in the development of glandular cells from mucous ones in fishes through mucoserous and seromucous cells of amphibia and reptiles to mucous, seromucous and protein cells in the tongue glands of higher mammals. In mucous glands of terranian vertebrates, especially in mammals, the number of components in the composition of the produced secretion was found to increase.  相似文献   

15.
The histology and histochemistry of the parotid, submandibular and sublingual glands were studied. The submandibular gland contained only serous acini as in the guinea pig, but unlike in many other mammals. The parotid gland contained only serous acini while the sublingual gland was mixed, mucous acini being the predominant secretory tissue interspersed by a few serous acini. Serous demilunes also commonly formed caps on the mucous acini. The ducts of the gland contributed over 30% of the volume of the submandibular gland, while those of the parotid and sublingual glands formed about 12 and 10% of the gland, respectively. The secretions of the parotid gland, as judged by histochemical methods, contained neutral mucins and some sialomucins. Neutral mucins, sulphomucins and sialomucins were detected in both the submandibular gland and sublingual gland.  相似文献   

16.
Class III mucin, identified by paradoxical concanavalin A staining, is confined to gastric gland mucous cells and is an essential component of the gastric surface mucous gel layer. The pretreatment required has hampered the application of this method to electron microscopic studies. Antibody HIK1083 reacts selectively with class III mucins. The present study was undertaken to explore, electron microscopically, the immunoreactivity of the human stomach to HIK1083. We examined normal mucosa from resected human stomachs (five cases; formalin-fixed, paraffin-embedded) and gastric biopsy specimens from patients with early gastric cancer [nine cases; glutaraldehyde- and osmium-fixed, epoxy-embedded (seven cases) and half-strength Karnovsky’s solution-fixed, Lowicryl K4M-embedded (two cases)]. Immunostaining with HIK1083 and anti-lysozyme antibody was examined under light and electron microscopes. Gland mucous cells were labeled with HIK1083, and lysozyme was detected in some gland mucous cells and surface mucous cells. Electron microscopically, the secretory granules of gland mucous cells contained a single electron-dense core. HIK1083-positive mucins and lysozyme coexisted in the secretory granules of gastric gland mucous cells. HIK1083-reactive mucins and lysozyme were distributed in the matrix and in the dense core of these secretory granules, respectively. HIK1083 can be used for electron immunohistochemistry. Accepted: 1 December 1999  相似文献   

17.
In order to sequence the cysteine-rich regions of pig gastric mucin (PGM), we used our previously identified pig gastric mucin clone PGM-2A to screen a pig stomach cDNA library and perform rapid amplification of cDNA ends to obtain two cysteine-rich clones, PGM-2X and PGM-Z13. PGM-2X has 1071 base pairs (bp) encoding 357 amino acids containing five serine-threonine-rich 16 amino acid tandem repeats, downstream from a cysteine-rich region similar to human and mouse MUC5AC. PGM-Z13 encodes the complete 3'-terminus of PGM and is composed of 3336 bp with a 2964 bp open reading frame encoding 988 amino acids with four serine-threonine-rich tandem repeats upstream from a cysteine-rich region similar to the carboxyl terminal regions of human and rat MUC5AC and human MUC5B. This region is homologous to von Willebrand factor C and D domains involved in acid induced polymerization, and to the carboxyl terminal cystine-knot domain of various mucins, TGF-beta, vWF and norrin, which is involved in dimerization. These newly sequenced cysteine-rich regions of pig gastric mucin may be critical for its gelation and for its observed increased viscosity induced by low pH.  相似文献   

18.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

19.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

20.
Summary Prostaglandins are considered to play important roles in gastric mucosal protection. The rate-limiting enzyme involved in the biosynthesis of prostaglandins is cyclooxygenase (COX), also known as prostaglandin H synthase. Two forms of COX are known: a constitutively expressed form (COX-1) and a newly-characterized, inducible form (COX-2). In the present study, the immunocytochemical localization of COX-1 and COX-2 was examined in the rat gastrointestinal tract. A strong immunoreactivity for COX-1 was localized in the mucous neck cells of gastric gland. A weak reactivity for COX-1 was also found in the mucous cell types in the cardiac gland and pyloric gland of the stomach as well as in the Brunner's gland of duodenum. Ultrastructurally, the immunoreactivity was localized to the apical cytoplasm of these cells. On the other hand, immunoreactivity for COX-2 was distributed in the surface mucous cells in both the fundic and pyloric regions of stomach. These results suggest that a subset of mucous cells is the primary site for production of prostaglandins in the rat gastrointestinal tract, and that two forms of COX are expressed in distinct types of mucous cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号