首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Abstract

The cells of the human IM-9 lymphocyte-derived line contain a sub-population of insulin binding sites which differ from classical insulin binding sites in their higher binding affinity for insulin-like growth factor II (IGF-II) and insulin-like growth factor I (IGF-I). These atypical insulin binding sites are identified on IM-9 cells by [125I]IGF-II binding.

To determine whether the atypical and classical insulin receptors of IM-9 cells were subject to different modes of in vivo regulation, we treated IM-9 cells with agents known to alter the surface expression of insulin receptors - insulin, dexamethasone and monensin. We then measured insulin and IGF-II binding to the surface of the washed cells.

Pretreatment of IM-9 cells with 1 μM insulin for 20 h at 37°C induced a 44–48% decrease in the number of high affinity insulin binding sites, but no change in the number of IGF-II binding sites. In contrast, the surface expression of both insulin and IGF-II binding sites (classical and atypical insulin receptors) increased 1.3 to 1.7-fold after treatment with dexamethasone (200 nM) and decreased 30 to 45% after monensin (1 μM). These results suggest that atypical and classical insulin receptors are differentially susceptible to down-regulation by insulin.  相似文献   

2.
Using a 125I-photoreactive insulin analogue that can be covalently coupled to its receptor we have shown that in rat hepatocytes the insulin receptor is concomitantly internalized with the labeled hormone and afterwards is progressively recycled back to the cell surface. In the course of the internalization process the insulin-receptor complex associates with clear vesicles and later on with lysosomes from which it is recycled through clear vesicles. On the basis of these observations it is suggested that modulation of the rates of internalization and of recycling of the insulin receptor can regulate the number of available surface insulin receptors. This hypothesis is supported by the results of experiments showing that monensin, an inhibitor of receptor recycling enhances insulin induced loss of its own surface receptors (down regulation) in U-937 monocytes.  相似文献   

3.
The mechanism of insulin-induced down-regulation of surface membrane insulin receptors was studied in the muscle cell line BC3H-1. Down-regulation for the differentiated myocytes is dose- and time-dependent with a half-maximum response at 0.5 nM insulin and a maximum decrease of 50% in the number of surface insulin receptors following exposure to 20 nM insulin for 18 h at 37 degrees C, as confirmed by Scatchard analysis. These receptors were fully recoverable upon lysis of the down-regulated myocyte with Triton X-100, demonstrating that down-regulation is mediated solely by insulin-induced receptor internalization without detectable receptor degradation. Phospholipase C treatment of intact down-regulated cells and Triton X-100 treatment after subcellular fractionation showed that no cryptic or masked receptors were detectable within the plasma membrane. Insulin-induced receptor internalization was dependent upon cellular energy production, protein synthesis, and endocytosis, but was insensitive to agents which primarily affect lysosomal, cytoskeletal, or transglutaminase activities. The magnitude of insulin-induced down-regulation and the kinetics of down-regulation and recovery of cell surface receptors indicate that the surface and internal receptor pools are in dynamic equilibrium with each other. The kinetic data are accommodated by separate internalization rate constants for the unoccupied (0.01 h-1) and occupied (0.11 h-1) surface receptors and a single recycling rate constant (0.11 h-1) for the internalized receptors. This model also explains the previous apparently paradoxical finding in several other systems that down-regulation is more sensitive to hormone than hormone-receptor binding under physiologic conditions. Down-regulation in BC3H-1 myocytes, therefore, appears to be mediated solely by an insulin-induced increase in the receptor internalization rate constant and a consequent shift in the dynamic equilibrium between the surface and internalized receptor pools, resulting in a 50% decrease in the number of cell surface receptors. In other systems where the internalized hormone receptor is a substrate for rapid degradation, the essential role of this shift in mediating the down-regulation process may be obscured.  相似文献   

4.
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.  相似文献   

5.
Isolated rat liver parenchymal cells incubated in the presence of monensin exhibited a reduced uptake of 125I-asialofetuin (125I-AF). Binding studies indicated that the effect was due to a rapid reduction in the number of active surface receptors for the asialoglycoprotein. Monensin had no effect on receptor internalization, but apparently interrupted the recycling of receptors back to the cell surface. Monensin also inhibited the degradation of 125I-AF previously bound to the cells; this inhibition was probably not due to a direct effect on intralysosomal proteolysis, as no lysosomal accumulation of undegraded ligand could be demonstrated in subcellular fractionation studies by means of sucrose gradients. It is more likely that monensin inhibits transfer of the labelled ligand from endocytic vesicles to lysosomes, as indicated by the accumulation of radioactivity in the former and by the ability of monensin to prevent the normally observed time-dependent increase in the buoyant density of endocytic vesicles. Whereas the effect of monensin on binding and uptake of asialofetuin was reversible, the effect on asialofetuin degradation could not be reversed.  相似文献   

6.
The presence of a membrane receptor for C-reactive protein (CRP-R) on the human monocytic cell line U-937 was the basis for determining the metabolic fate of the receptor-bound ligand and the functional response of the cells to CRP. Internalized [125I]CRP was measured by removing cell surface-bound [125I]CRP with pronase. Warming cells to 37 degrees C resulted in the internalization of approx. 50% of the receptor-bound [125I]CRP or receptor-bound [125I]CRP-PC-KLH complexes. U-937 cells degraded about 25% of the internalized [125I]CRP into TCA-soluble radiolabeled products. The lysosomotrophic agents (chloroquine, NH4Cl) greatly decreased the extent of CRP degradation without altering binding or internalization. In addition, a pH less than 4.0 resulted in dissociation of receptor-bound [125I]CRP. Treatment of U-937 cell with monensin, a carboxylic ionophore which prevents receptor recycling, resulted in accumulation of internalized [125I]CRP. Therefore, it appears that the CRP-R complex is internalized into an endosomal compartment where the CRP is uncoupled from its receptor and subsequently degraded. CRP initiated the differentiation of the U-937 cells so that they acquired the ability to produce H2O2 and also display in vitro tumoricidal activity. The results support the concept that internalization and degradation of CRP leads to the activation of monocytes during inflammation.  相似文献   

7.
In cultured human fibroblasts, each LDL receptor mediates the internalization of approximately 100 particles of LDL every 20 hr. We provide evidence that this reutilization of LDL receptors involves the recycling of receptors into and out of the cell and that the carboxylic ionophore monensin blocks the return of the receptors to the surface. In the presence of monensin and LDL, 75% of the receptors disappeared from the cell surface within 15 min and more than 90% disappeared within 60 min. The receptors that left the surface were trapped intracellularly within perinuclear vacuoles, as visualized by indirect immunofluorescence with the use of LDL, monensin caused about 50% of the receptors to be trapped intracellularly within 15 min. The receptors that remained on the surface after monensin treatment could be trapped within the cell if LDL was added subsequently in the continued presence of monensin. Monensin did not decrease surface LDL receptors in fibroblasts from a patient (J.D.) with the internalization-defective form of familial hypercholesterolemia. In these mutant cells, LDL receptors are not localized to coated pits. The current data are interpreted to indicate that: in normal fibroblasts about 50% of surface LDL receptors absence of LDL; the remaining 50% of surface receptors can be induced to recycle by the presence of LDL; and monensin interrupts this recycling by preventing the receptor from returning to the surface, thereby causing the receptors to accumulate within the cell.  相似文献   

8.
The endocytosis, recycling, and degradation of the insulin receptor were studied in IM-9 cells and U-937 cells by employing two monoclonal antibodies directed at the alpha subunit of the human insulin receptor, antibodies MA-5 and MA-10. Antibody MA-5 is an insulin agonist and MA-10 is an insulin antagonist (Forsayeth, J., Caro, J.F., Sinha, M.K., Maddux, B.A., and Goldfine, I.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3448-3451). Both monoclonal antibodies, like insulin, induced the endocytosis of the insulin receptor within 15 min. Upon removal of extracellular ligand the internalized receptor recycled to the cell surface. At this time there was no degradation of the receptor as measured by a sensitive insulin receptor radioimmunoassay. After 20 h of incubation, insulin and MA-5, but not MA-10, induced significant receptor degradation as measured by both insulin receptor radioimmunoassay and metabolic labeling studies. These studies demonstrated, therefore, that: 1) internalization and recycling of the receptor can be induced by antireceptor monoclonal antibodies that are either insulin agonists or insulin antagonists; 2) enhanced receptor degradation can be induced by monoclonal antibodies that are insulin agonists; and 3) the process of receptor internalization does not necessarily lead to enhanced receptor degradation. Since prior studies have indicated that neither MA-5 nor MA-10 enhance insulin receptor kinase activity, the present studies also suggest that insulin receptor endocytosis and degradation induced by ligands different than insulin can occur without activation of this process.  相似文献   

9.
Complete inhibition of transferrin recycling by monensin in K562 cells   总被引:17,自引:0,他引:17  
Monensin blocks human transferrin recycling in a dose-dependent and reversible manner in K562 cells, reaching 100% inhibition at a noncytocidal dose of 10(-5) M, whereas transferrin recycling is virtually unaffected by noncytocidal doses of chloroquine. The intracellular pathway of human transferrin in K562 cells, both in the presence and absence of 10(-5) M monensin, was localized by indirect immunofluorescence. Monensin blocks transferrin recycling by causing internalized ligand to accumulate in the perinuclear region of the cell. The effect of 10(-5) M monensin on human transferrin kinetics was quantitatively measured by radioimmunoassay and showed a positive correlation with immunofluorescent studies. Immunoelectron microscopic localization of human transferrin as it cycles through K562 cells reveals the appearance of perinuclear transferrin-positive multivesicular bodies within 3 min of internalization, with subsequent exocytic delivery of the ligand to the cell surface via transferrin-staining vesicles arising from these perinuclear structures within 5 min of internalization. Inhibition of ligand recycling with 10(-5) M monensin causes dilated transferrin-positive multivesicular bodies to accumulate within the cell with no evidence of recycling vesicles. A coordinated interaction between multivesicular bodies and the Golgi apparatus appears to be involved in the recycling of transferrin in K562 cells. Cell-surface-binding sites for transferrin were reduced by 50% with 10(-5) M monensin treatment; however, this effect was not attenuated by 80% protein synthesis inhibition with cycloheximide, supporting the idea that the transferrin receptor is also recycled through the Golgi.  相似文献   

10.
Insulin is able to down-regulate its specific cell surface receptor in cultured human lymphocytes. The effect of vanadate, a known insulinomimetic agent, was examined to determine whether it could mimic insulin to down-regulate the insulin receptor. Exposure of cultured human lymphocytes (IM-9) to vanadate (0-200 microM) resulted in a time- and dose-dependent decrease in cell surface insulin receptors to 60% of control, while insulin (100 nM) down-regulated to 40%. The vanadate effect, in contrast to the rapid effect of insulin, was slow to develop (4-6 h). Surface receptor recovery after 18 h exposure was rapid after vanadate removal (20 min), but it required hours after insulin suggesting the presence of an intracellular (cryptic) pool of receptors after vanadate treatment. Insulin binding to Triton X-100-solubilized whole cells after 18 h treatment revealed that total cell receptors had decreased to 50% of control after insulin but increased to 120 and 189% of control after 100 and 200 microM vanadate, respectively. Furthermore, vanadate inhibited the insulin-mediated loss of total cell receptors from 50 to 28%. Removal of cell surface receptors by trypsin before cell solubilization revealed that 100 microM vanadate increased insulin binding to 321% of control indicating an accumulation of intracellular receptors. Labeling of cell surface proteins with Na125I and lactoperoxidase followed by immunoprecipitation of solubilized receptors with anti-receptor antibody after incubation for various times up to 20 h and quantitation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that, while insulin shortened t1/2 from 7.3 to 5.3 h, vanadate prolonged receptor t1/2 to 14 h. No effect of vanadate was detected on insulin receptor tyrosine kinase activity with up to 4 h incubation at the vanadate concentrations used in this study. Furthermore, human growth hormone surface receptors were similarly down-regulated by vanadate. We conclude that 1) vanadate has an apparent insulin-like effect to down-regulate cell surface insulin receptors in cultured human lymphocytes; 2) in contrast to insulin-induced down-regulation which is associated with receptor degradation vanadate causes an accumulation of intracellular (cryptic) receptors and inhibits insulin receptor degradation; and 3) these effects of vanadate may be exerted on other cell surface receptors.  相似文献   

11.
Insulin internalization and degradation, insulin receptor internalization and recycling, as well as long term receptor down-regulation were comparatively studied in Chinese hamster ovary (CHO) cell lines, either parental or expressing the wild-type human insulin receptor (CHO.R) or a mutated receptor in which the tyrosine residues in positions 1162 and 1163 were replaced by phenylalanines (CHO.Y2). The two transfected cell lines presented very similar binding characteristics, and their pulse labeling with [35S]methionine revealed that the receptors were processed normally. As expected, the mutation of these twin tyrosines resulted in a defective insulin stimulation of both receptor kinase activity and glycogen synthesis. We now present evidence that compared to CHO.R cells, which efficiently internalized and degraded insulin, CHO.Y2 cells exhibited a marked defect in hormone internalization, leading to impaired insulin degradation. Moreover, the mutated receptors were found to be less effective than the wild-type receptors in transducing the hormone signal for receptor internalization, whereas the process of receptor recycling after internalization seemed not to be altered. In parental CHO cells, insulin induced long term receptor down-regulation, but was totally ineffective in both transfected cell lines. These results reveal that the tyrosines 1162 and 1163 in the kinase regulatory domain of the receptor beta-subunit play a pivotal role in insulin and receptor internalization.  相似文献   

12.
The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, [azidobenzoyl-D-Lys6]GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors.  相似文献   

13.
Insulin receptors of Fao hepatoma cells were labelled with a 125I-labelled photoreactive insulin analogue or by surface iodination catalysed by lactoperoxidase. Cells were then incubated at 37 degrees C, and the cellular localization of the labelled receptors was assessed by limited exposure of intact cells to trypsin. The results show that: (1) photolabelled insulin-receptor complexes are internalized and recycled in Fao hepatoma cells; (2) the dynamics of photolabelled insulin receptors (internalization and recycling) is similar before and after down-regulation; (3) the unoccupied receptors labelled by surface iodination are internalized and recycled similarly to covalent insulin-receptor complexes; (4) insulin does not induce internalization of surface-iodinated insulin receptors. We conclude that internalization and recycling of insulin receptors are independent of receptor occupancy by insulin in Fao hepatoma cells.  相似文献   

14.
In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [125I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores, as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.  相似文献   

15.
Insulin processing and signal transduction in rat adipocytes   总被引:1,自引:0,他引:1  
A glycine-HCl buffer (glycine, 50 mM/NaCl, 0.15 M/HCl, pH 3.5) was used to strip insulin bound to adipocyte cell surfaces. Adipocytes retained their integrity in the glycine buffer and their binding capacity for [125I]iodoinsulin could be completely recovered on transfer of the cells to physiological media. At 37 degrees C, [125I]iodoinsulin binds rapidly to plasma membrane receptors; maximal binding occurs within 10 min. At this temperature, the initial binding is followed by rapid internalization, degradation of the hormone and subsequent loss of label. Insulin treatment, at 37 degrees C, induced internalization of 37% of the plasma membrane insulin receptors. Phenylarsine oxide (PAO), a confirmed inhibitor of protein internalization, allowed insulin binding but completely inhibited degradation of the hormone. Monensin, a carboxylic ionophore which impairs uncoupling hormone-receptor complexes, effectively restricted insulin degradation over short time periods (less than 30 min). Addition of monensin to insulin-stimulated cells did not impair D-glucose uptake. It has previously been reported that PAO inhibits hexose transport through the direct interaction with the glucose transporters and low concentrations of PAO (1 microM) transiently inhibit insulin-stimulated glucose uptake. This recovery phenomenon was again observed when PAO was added to insulin-stimulated, monensin-treated adipocytes. The data suggests that lysosomal degradation of insulin is not requisite for signal transduction.  相似文献   

16.
The endocytosis and recycling of the human transferrin receptor were evaluated by several experimental modalities in K562 cells perturbed with 10(-5) M monensin. The work presented is an extension of a previous study demonstrating both complete inhibition of release of internalized human transferrin and a 50% reduction in the number of cell surface transferrin binding sites in K562 cells treated with monensin (Stein, B. S., Bensch, K. G., and Sussman, H. H. (1984) J. Biol. Chem. 259, 14762-14772). The data directly reveal the existence of two distinct transferrin receptor recycling pathways. One pathway is monensin-sensitive and is felt to represent recycling of transferrin receptors through the Golgi apparatus, and the other pathway is monensin-resistant and most likely represents non-Golgi-mediated transferrin receptor recycling. A transferrin-free K562 cell culture system was developed and used to demonstrate that cell surface transferrin receptors can be endocytosed without antecedent ligand binding, indicating that there are factors other than transferrin binding which regulate receptor internalization. Evidence is presented suggesting that two transferrin receptor recycling pathways are also operant in K562 cells under ligand-free conditions, signifying that trafficking of receptor into either recycling pathway is not highly ligand-dependent.  相似文献   

17.
Binding studies with cells that had been permeabilized with saponin indicate that alveolar macrophages have an intracellular pool of mannose-specific binding sites which is about 4-fold greater than the cell surface pool. Monensin, a carboxylic ionophore which mediates proton movement across membranes, has no effect on binding of ligand to macrophages but blocks receptor-mediated uptake of 125I-labelled beta-glucuronidase. Inhibition of uptake was concentration- and time-dependent. Internalization of receptor-bound ligand, after warming to 37 degrees C, was unaffected by monensin. Moreover, internalization of ligand in the presence of monensin resulted in an intracellular accumulation of receptor-ligand complexes. The monensin effect was not dependent on the presence of ligand, since incubation of macrophages with monensin at 37 degrees C without ligand resulted in a substantial decrease in cell-surface binding activity. However, total binding activity, measured in the presence of saponin, was much less affected by monensin treatment. Removal of monensin followed by a brief incubation at pH 6.0 and 37 degrees C, restored both cell-surface binding and uptake activity. Fractionation experiments indicate that ligands enter a low-density (endosomal) fraction within the first few minutes of uptake, and within 20 min transfer to the lysosomal fraction has occurred. Monensin blocks the transfer from endosomal to lysosomal fraction. Lysosomal pH, as measured by the fluorescein-dextran method, was increased by monensin in the same concentration range that blocked ligand uptake. The results indicate that monensin blockade of receptor-mediated endocytosis of mannose-terminated ligands by macrophages is due to entrapment of receptor-ligand complexes and probably receptors in the pre-lysosomal compartment. The inhibition is linked with an increase in the pH of acid intracellular vesicles.  相似文献   

18.
We have examined the process by which human choriogonadotropin/luteinizing hormone (hCG/LH) receptors are regulated in cultured porcine Leydig cells. Treatment of Leydig cells with human choriogonadotropin, cholera toxin, forskolin and cyclic 8-bromoAMP (8-BrcAMP) produced a loss of surface receptors without modification of the binding affinity. This negative regulation of the number of receptors mediated by maximal concentrations of hCG was higher than that induced by the other agents. The extent of receptor loss in cells treated with increasing concentrations of hCG was highly correlated with their capacity to stimulate cAMP production. However, there was little correlation between down-regulation and cAMP production of these cells treated by hCG plus forskolin or cholera toxin plus forskolin, where a synergistic cAMP production was obtained. Following exposure of Leydig cells to both hCG and 8-BrcAMP, the surface receptor disappearance began after an initial lag period of about 6-8 h. Thereafter a 50% loss of surface receptor was observed in the next 8-h incubation. Monensin with hCG shortens this lag period before initiation of receptor loss. Kinetic studies with 125I-hCG, in the presence or absence of monensin, showed that the half-life of the receptor-bound hormone complexes at the cell surface was 10.5 h and 8 h respectively. Therefore, the steady state of the surface receptor during the lag phase of 8 h is probably related to recycling of internalized receptors and/or translocation of performed receptors. Cycloheximide and actinomycin D inhibit hCG-mediated and 8-BrcAMP-mediated down-regulation. Cycloheximide lengthens ligand-receptor complexes at the surface by slowing down the rate of internalization (half-life of 20 h), but this mechanism is not enough per se to explain the effect of cycloheximide. Pulses of hCG or 8-BrcAMP for 4 h and 8 h sufficed to induce nearly maximal down-regulation. However, it was possible to attenuate this triggering effect by adding cycloheximide after pulse of the cells. Thus, even after removal of the triggering agent (hCG or 8-BrcAMP), the loss of surface receptor could be triggered by a protein-sensitive signal. Taken as a whole these results indicate that a coordinated interaction is involved in the cell-surface hCG/LH receptor regulation. The apparent steady state of the number of receptors during the first hours of stimulation passed through a reuptake of internalized receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In the present study, we investigated the mechanism by which the antidiabetic drug phenformin increases insulin binding to its receptors in IM-9 human cultured lymphocytes. After a 24-hr preincubation, phenformin induced a twofold increase in specific 125I-insulin binding, and removal of phenformin was followed 6 hr later by a return in binding to control levels. This effect of phenformin on insulin binding was not a consequence of either inhibition of cell growth, changes in cellular cyclic adenosine monophosphate (AMP) levels, or changes in guanosine triphosphate (GTP) content. Since phenformin is known to inhibit various aspects of cellular energy metabolism, the relationship between 125I-insulin binding and energy metabolism in IM-9 cells was investigated. The phenformin-induced increase in insulin binding to IM-9 cells was related to a time- and dose-dependent decrease in ATP levels. Other agents that lowered ATP levels, including antimycin, dinitrophenol, and 2-deoxyglucose, also raised insulin binding. These studies indicated, therefore, that phenformin enhances insulin binding to receptors on IM-9 cells and that this effect on insulin receptors may be related to alterations in metabolic functions that are reflected by a lowering of ATP levels.  相似文献   

20.
Chen LE  Gao C  Chen J  Xu XJ  Zhou DH  Chi ZQ 《Life sciences》2003,73(1):115-128
Internalization and recycling of G protein-coupled receptors (GPCRs), such as the mu-opioid receptor, largely depend on agonist stimulation. Agonist-promoted internalization of some GPCRs has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether different mu opioid agonists displayed different effects in receptor internalization and recycling, the potential mechanisms involved in ohmefentanyl-induced internalization process. In transfected Sf9 insect cells expressing 6His-tagged wild type mu opioid receptor, exposure to 100 nM ohmefentanyl caused a maximum internalization of the receptor at 30 min and receptors seemed to reappear at the cell membrane after 60 min as determined by radioligand binding assay. Ohmefentanyl-induced human mu opioid receptor internalization was concentration-dependent, with about 40% of the receptors internalized following a 30-min exposure to 1 microM ohmefentanyl. 10 microM morphine and 1 microM DAMGO could also induce about 40% internalization. The antagonist naloxone and pretreatment with pertussis toxin both blocked ohmefentanyl-induced internalization without affecting internalization themselves. Incubation with sucrose 0.45 M significantly inhibited ohmefentanyl-induced internalization of the mu receptor. The removal of agonists ohmefentanyl and morphine resulted in the receptors gradually returning to the cell surface over a 60 min period, while the removal of agonist DAMGO only partly resulted in the receptor recycling. The results of this study suggest that ohmefentanyl-induced internalization of human mu opioid receptor in Sf9 insect cells occurs via Gi/o protein-dependent process that likely involves clathrin-coated pits. In addition, the recycling process displays the differential modes of action of different agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号