首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum. acid-base transporters; cystic fibrosis transmembrane conductance regulator channel; surface pH gradient; mucus gels; trefoil peptides  相似文献   

2.
Gastrointestinal mucus is considered an important part of the mucosal defence mechanism against endogenous aggressors such as acid and pepsin. The mucus gel layer, adherent to the mucosal surface creates a diffusion barrier to luminal pepsin, thus protecting the underlying epithelium from the digestion by pepsin. The mucolytic pepsin will, however, digest the mucus at its luminal surface, but that lost is normally balanced by secretion of new mucus. This dynamic balance is disrupted when the mucus is exposed to excess pepsin, which causes focal haemorrhagic damage by progressively hydrolyzing the adherent mucus. The adherent mucus gel layer cannot contribute to the protection against exogen damaging agents such as ethanol and nonsteroidal anti-inflammatory drugs, as these compounds easily penetrate the mucus barrier causing, at high concentration, epithelial exfoliation. This study describes the basic properties and characteristics of gastric mucus and compares the pepsin-induced damage with the ethanol damage model.  相似文献   

3.
The role of Campylobacter pyloridis, a spiral bacteria associated with gastritis and peptic ulcers in weakening the mucus component of gastric mucosal barrier was investigated. The colonies of bacteria, cultured from antral mucosal biopsies of patients undergoing gastroscopy, were washed with saline, passed through sterilization filter and the filtrate was examined for protease and glycosylhydrolase activities. The obtained results revealed that the filtrate exhibited a strong proteolytic activity not only towards the typical protein substrates such as albumin but also towards gastric mucin. Optimum enzymatic activity for degradation of mucin was attained at pH 7.0 and the protease activity was found in a low m.w. (less than 50K) protein fraction. The filtrate showed little glycosylhydrolase activity and did not cause the hydrolysis of mucin carbohydrates. The data suggest that C pyloridis infection weakens the gastric mucosal defense by causing proteolytic degradation of mucin component of the protective mucus layer.  相似文献   

4.
Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to bioactive nitrogen oxides, including nitric oxide (NO). In this study, we investigated the gastroprotective role of nitrate intake and of luminally applied nitrite against provocation with diclofenac and taurocholate. Mucosal permeability ((51)Cr-EDTA clearance) and gastric mucosal blood flow (laser-Doppler flowmetry) were measured in anesthetized rats, either pretreated with nitrate in the drinking water or given acidified nitrite luminally. Diclofenac was given intravenously and taurocholate luminally to challenge the gastric mucosa. Luminal NO content and nitrite content in the gastric mucus were determined by chemiluminescence. The effect of luminal administration of acidified nitrite on the mucosal blood flow was also investigated in endothelial nitric oxide synthase-deficient mice. Rats pretreated with nitrate or given nitrite luminally had higher gastric mucosal blood flow than controls. Permeability increased more during the provocation in the controls than in the nitrate- and nitrite-treated animals. Dietary nitrate increased luminal NO levels 50 times compared with controls. Nitrate intake also resulted in nitrite accumulation in the loosely adherent mucous layer; after removal of this mucous layer, blood flow was reduced. Nitrite administrated luminally in endothelial nitric oxide synthase-deficient mice increased mucosal blood flow. We conclude that dietary nitrate and direct luminal application of acidified nitrite decrease diclofenac- and taurocholate-induced mucosal damage. The gastroprotective effect likely involves a higher mucosal blood flow caused by nonenzymatic NO production. These data suggest an important physiological role of nitrate in the diet.  相似文献   

5.
Antrum mucosal protein (AMP)-18 is a novel 18-kDa protein synthesized by cells of the gastric antrum mucosa. The protein is present in secretion granules of murine gastric antrum epithelial cells and is a component of canine antrum mucus, suggesting that it is secreted into the viscoelastic gel layer on the mucosal surface. Release of the protein appears to be regulated because forskolin decreased the amount of immunoreactive AMP-18 in primary cultures of canine antrum mucosal epithelial cells, and indomethacin gavaged into the stomach of mice reduced AMP-18 content in antrum mucosal tissue before inducing histological injury. A functional domain of the protein was identified by preparing peptides derived from the center of human AMP-18. A 21-mer peptide stimulated growth of gastric and intestinal epithelial cells, but not fibroblasts, and increased restitution of scrape-wounded gastric epithelial monolayers. These functions of AMP-18 suggest that its release onto the apical cell surface is regulated and that the protein and/or peptide fragments may protect the antral mucosa and promote healing by facilitating restitution and proliferation after injury.  相似文献   

6.
Nitrate is abundant in our diet with particularly high levels in many vegetables. Ingested nitrate is concentrated in saliva and reduced to nitrite by bacteria in the oral cavity. We recently reported that application of nitrite-containing saliva to the gastric mucosa increases superficial blood flow and mucus generation via acid-catalyzed formation of bioactive nitrogen oxides including nitric oxide. Here we studied if dietary supplementation with nitrate would protect against gastric damage caused by a nonsteroidal anti-inflammatory drug. Rats received sodium nitrate in the drinking water for 1 week in daily doses of 0.1 or 1 mmol kg(-1). Control rats received 1 mmol kg(-1) sodium chloride. Diclofenac (30 mg kg(-1)) was then given orally and the animals were examined 4 h later. In separate experiments we studied the effects of dietary nitrate on intragastric NO levels and mucus formation. Luminal levels of NO gas were greatly increased in nitrate-fed animals. The thickness of the mucus layer increased after nitrate supplementation and gene expression of MUC6 was upregulated in the gastric mucosa. Nitrate pretreatment dose dependently and potently reduced diclofenac-induced gastric lesions. Inflammatory activity was reduced in the rats receiving nitrate as indicated by lower mucosal myeloperoxidase activity and expression of inducible NO synthase. We conclude that dietary nitrate protects against diclofenac-induced gastric ulcers likely via enhanced nitrite-dependent intragastric NO formation and concomitant stimulation of mucus formation. Future studies will reveal if a diet rich in nitrate can offer an additional nutritional approach to preventing and treating peptic ulcer disease.  相似文献   

7.
Epidermal growth factor (EGF) is produced in Brunner's glands and plays a role in healing and repair of duodenal ulcers. We examined the participation of zwitterionic phospholipids of mucus in the effects of EGF. Under anesthesia, groups of rats received an intraduodenal bolus of either saline or EGF. Some rats received subcutaneous indomethacin followed by EGF or EGF followed by a detergent (5% Brij 35, a nonionic detergent that solubilizes luminal phospholipids). Thirty minutes after treatment, mucosal surface hydrophobicity and phospholipid concentration in the mucus layer were measured. Matched groups of rats were challenged with 0.5 M HCl, instilled intraduodenally 30 min after treatment, and mucosal damage was assessed 1 h after acid challenge. Exogenous EGF significantly increased surface hydrophobicity and phosphatidylcholine concentration in the mucus layer. EGF treatment also reduced mucosal damage induced by acid. However, indomethacin pretreatment or detergent administration after EGF abolished both protection against acid and changes in the mucus layer. These data suggest that EGF increases duodenal resistance to luminal acid via stimulation of mucosal zwitterionic phospholipids.  相似文献   

8.
We recently investigated the effects of the major proteins in cow's milk on gastric mucosal injuries in rat ulcer models. We found that alpha-lactalbumin (alpha-LA) has marked preventive effects against gastric mucosal injuries and that prostaglandin (PG) synthesis may contribute to these effects [Matsumoto et al., Biosci. Biotechnol. Biochem., 65, 1104-1111, 2001]. In this study, we investigated the effects of alpha-LA on several defense mechanisms of gastric mucosa by evaluating gastric PGE2 content, gastric mucin content, gastric luminal pH, gastric fluid volume, and gastric emptying in naive rats. Oral administration of alpha-LA (200, 500, and 1000 mg/kg) elevated endogenous PGE2 levels in gastric tissue and increased the gastric mucin contents of both the gastric fluid and the adherent mucus gel layer. In addition to these PG-related responses, alpha-LA also caused PG-independent responses such as elevation of gastric luminal pH, increase in gastric fluid volume, and delay in gastric emptying. These responses were observed to be dose-dependent (200-1000 mg/kg of alpha-LA). Thus, we demonstrated that alpha-LA enhances both PG-dependent and PG-independent gastric defense mechanisms in naive rats. Both of these mechanisms are probably involved in its gastroprotective action.  相似文献   

9.
Peptic erosion of gastric mucus in the rat   总被引:1,自引:0,他引:1  
1. The effect of pepsin on the loss of mucus glycoprotein from the gastric epithelial mucus layer was studied in the rat. 2. Pepsin was instilled into the gastric lumen, and luminal contents were subsequently assayed. 3. Glycoprotein loss increased with luminal pepsin, up to a concentration of 1 mg pepsin/ml. 4. Luminal glycoprotein had a molecular size distribution intermediate between subunit, and native mucus glycoprotein of the epithelial mucus layer. 5. Incubation of gastric epithelial scrapings with pepsin demonstrated that insoluble, native mucus glycoprotein was rapidly degraded to soluble glycoprotein of similar molecular size distribution to that found in vivo in the lumen.  相似文献   

10.
The mucus layer continuously covering the gastric mucosa consists of a loosely adherent layer that can be easily removed by suction, leaving a firmly adherent mucus layer attached to the epithelium. These two layers exhibit different gastroprotective roles; therefore, individual regulation of thickness and mucin composition were studied. Mucus thickness was measured in vivo with micropipettes in anesthetized mice [isoflurane; C57BL/6, Muc1-/-, inducible nitric oxide synthase (iNOS)-/-, and neuronal NOS (nNOS)-/-] and rats (inactin) after surgical exposure of the gastric mucosa. The two mucus layers covering the gastric mucosa were differently regulated. Luminal administration of PGE(2) increased the thickness of both layers, whereas luminal NO stimulated only firmly adherent mucus accumulation. A new gastroprotective role for iNOS was indicated since iNOS-deficient mice had thinner firmly adherent mucus layers and a lower mucus accumulation rate, whereas nNOS did not appear to be involved in mucus secretion. Downregulation of gastric mucus accumulation was observed in Muc1-/- mice. Both the firmly and loosely adherent mucus layers consisted of Muc5ac mucins. In conclusion, this study showed that, even though both the two mucus layers covering the gastric mucosa consist of Muc5ac, they are differently regulated by luminal PGE(2) and NO. A new gastroprotective role for iNOS was indicated since iNOS-/- mice had a thinner firmly adherent mucus layer. In addition, a regulatory role of Muc1 was demonstrated since downregulation of gastric mucus accumulation was observed in Muc1-/- mice.  相似文献   

11.
Integrated duodenal protective response to acid.   总被引:7,自引:0,他引:7  
J D Kaunitz  Y Akiba 《Life sciences》2001,69(25-26):3073-3081
The proximal duodenum is unique in that it is the only leaky epithelium regularly exposed to concentrated gastric acid. To prevent injury from occurring, numerous duodenal defense mechanisms have evolved. The most studied is bicarbonate secretion, which is presumed to neutralize luminal acid. Less well studied in their protective roles are the mucus gel layer and blood flow. Measuring duodenal epithelial intracellular pH [pHi], blood flow and mucus gel thickness (MGT), we studied duodenal defense mechanisms in vivo so as to more fully understand the mucosal response to luminal acid. Exposure of the mucosa to physiologic acid solutions promptly lowered pHi, followed by recovery after acid was removed, indicating that acid at physiologic concentrations readily diffuses into, but does not damage duodenal epithelial cells. Cellular acid then exits the cell via an amiloride-inhibitable process, presumably sodium-proton exchange (NHE). MGT and blood flow increase promptly during acid perfusion; both decrease after acid challenge and are inhibited by vanilloid receptor antagonists or by sensory afferent denervation. Bicarbonate secretion is not affected by acid superfusion but increases after challenge. Inhibition of cellular base loading lowers pHi, whereas inhibition of apical base extrusion alkalinizes pHi. These observations support the following hypothesis: luminal acid diffuses into the epithelial cells, lowering pHi. Acidic pHi increases the activity of a basolateral NHE, acidifying the submucosal space and increasing cellular base loading. The acidic submucosal space activates capsaicin receptors on afferent nerves, increasing MGT and blood flow. With concontinued acid exposure, a new steady state with thickened mucus gel, increased blood flow, and a higher cellular buffering power protects against acid injury. After acid challenge, mucus secretion decreases, blood flow slows, and pHi returns to normal, the latter occurring via apical bicarbonate extrusion, increasing bicarbonate secretion. Through these integrated mechanisms, the epithelial cells are protected from damage due to repeated pulses of concentrated gastric acid.  相似文献   

12.
Partially purified native-pig gastric mucus and purified pig gastric mucin, prepared by column chromatography and caesium chloride (CsCl) density-gradient ultracentrifugation, were subjected to pepsin digestion. The products of peptic digestion were chromatographed on Sepharose CL-2B, and fractions were assayed for carbohydrate by the periodic acid-Schiff reaction. The polymeric gastric mucin in the purified mucin samples was readily degraded by pepsin. In sharp contrast, the polymeric mucin in the partially purified mucus was relatively resistant to pepsin digestion. In 45 min, pepsin degraded 40% of the polymeric mucin in the purified samples, whereas it produced no significant degradation (less than 10%) in the partially purified mucus samples. In partially purified gastric mucus, treated with CsCl but not fractionated by ultracentrifugation, digestion with pepsin was also slow and incomplete. This showed that differences in susceptibility between partially purified and purified preparations are not due to the chaotropic effects of CsCl. In addition, the recombination of low-density nonmucin fractions in CsCl ultracentrifugation with the mucin also resisted pepsin digestion. Finally, we have shown that the low-density fractions in mucus exhibited a strong inhibitory effect of peptic activity in vitro. We conclude that under our experimental conditions, pepsin has little effect on partially purified mucus, and our findings indicate an inhibitor of peptic digestion is present in native gastric mucus. It is likely, but unproven, that this inhibitor is a noncovalently bound lipid present in the low-density fraction.  相似文献   

13.
Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel in acidic conditions, with the transition occurring near pH 4. In addition to pH-dependent gelation behavior in this system, further rheological studies under nonlinear deformations reveal shear thinning and an apparent yield stress in this material which are also highly influenced by pH.  相似文献   

14.
This paper was inspired by the reported results of authors from Uppsala and Lund that gastric glands in rats rhythmically contract 3-7 cycles per minute and develop luminal pressures more than 10 mmHg. To ensure that pepsinogen is not retained in the acid-rich section of the gland, ejection fractions would need to be more than 50% of the gland volume. We have tried to calculate the ejection fraction of such contractions. Dimensions of human gastric glands were measured on the fresh frozen samples of macroscopically and histologically normal gastric mucosa. In total, 18 specimens (from nine persons) were measured under the microscope. The density of glands was 135 +/- 11 (mean +/- S.D.) glands per mm( 2) of gastric mucosa. A typical gastric gland is a tubular structure 1.2 +/- 0.22 mm long and 0.03-0.05 mm wide. We have used 1 mm for length and 0.03 mm for the gland diameter to calculate that each gland approximates a volume of 707 pl, suggesting that the total glandular volume for 15 million glands reaches 10.6 ml. Further calculations based on one to five contractions per minute on an average and on the total volume of gastric glands of 10 ml showed that only ejection fractions less than 10% deliver daily volumes less than 3 l. The presented model of the gastric gland activity is based on the idea that the low ejection fractions require a reduction of the glandular dead space. The reduced luminal pressure during the gland relaxation might cause backflux of hydrophobic viscoelastic mucus through the gland aperture. Repeated glandular contractions and relaxations would move the mucus all the way to the gland bottom, filling the gland cavity below the neck with an axial semisolid mucous cylinder. This filling would reduce the gland dead space. During contractions, the gland would eject mainly the peripheral, the more liquid part of its content. The decreasing luminal pressure in the relaxing gland would pull the outlet mucus inside, protecting gland apertures from the gastric juice.  相似文献   

15.
Brunner's glands are unique to mammalian species and in eutherians are confined primarily to the submucosa of the proximal duodenum. In the majority of species examined, they begin at the gastrointestinal junction and extend for variable distances distally in the wall of the proximal small intestine. Ducts of individual glands empty either directly into the intestinal lumen or unite with overlying intestinal glands (crypts of Lieberkühn) dependent on the species. Secretory units of Brunner's glands consist of epithelial tubules that show frequent distal branchings. The secretory units, with the exception of those found in rabbits and horses, consist primarily of a mucin producing cell type. However, other cell types normally associated with the overlying intestinal epithelium may be encountered scattered within the secretory units reflecting the developmental origin of these glands. Secretion from Brunner's glands contributes to a layer of mucus that forms a slippery, viscoelastic gel that lubricates the mucosal lining of the proximal intestinal tract. The unique capacity of this mucus layer to protect delicate underlying epithelial surfaces is due primarily to the gel-forming properties of its glycoprotein molecules. Mucin glycoproteins produced by Brunner's glands consist primarily but not exclusively of O-linked oligosaccharides attached to the central protein core of the glycoprotein molecule. Human Brunner's glands produce class III mucin glycoproteins and are thought to be the product of mucin gene MUC6 which is assigned to chromosome 11 (11p15-11p15.5 chromosome region). In addition to mucin glycoproteins and a limited amount of bicarbonate, numerous additional factors (epidermal growth factor, trefoil peptides, bactericidal factors, proteinase inhibitors, and surface-active lipids) have been identified within the secretory product of Brunner's glands. These factors, incorporated into the mucus layer, guard against the degradation of this protective barrier and underlying mucosa by gastric acid, pancreatic enzymes, and other surface active agents associated with this region. Yet other factors produced by Brunner's glands function to provide active and passive immunological defense mechanisms, promote cellular proliferation and differentiation, as well as contribute factors that elevate the pH of luminal contents of this region by promoting secretion of the intestinal mucosa, pancreatic secretion and gall bladder contraction. Additional insights concerning the role of Brunner's glands in the mammalian gastrointestinal tract as well as their possible evolution in this class of vertebrates have been gained from a basic understanding of their pathobiology.  相似文献   

16.
Despite the fact that mucus and bicarbonate are important macroscopic components of the gastric mucosal barrier, severe acidic and peptic conditions surely exist at the apical membrane of gastric glandular cells, and these membranes must have highly specialized adaptations to oppose external insults. Parietal cells abundantly express the heterodimeric, acid-pumping H-K-ATPase in their apical membranes. Its beta-subunit (HKbeta), a glycoprotein with >70% of its mass and all its oligosaccharides on the extracellular side, may play a protective role. Here, we show that the extracellular domain of HKbeta is highly resistant to trypsin in the native state (much more than that of the structurally related Na-K-ATPase beta-subunit) and requires denaturation to expose tryptic sites. Native HKbeta also resists other proteases, such as chymotrypsin and V8 protease, which hydrolyze at hydrophobic and anionic amino acids, respectively. Removal of terminal alpha-anomeric-linked galactose does not appreciably alter tryptic sensitivity of HKbeta. However, full deglycosylation makes HKbeta much more susceptible to all proteases tested, including pepsin at pH <2.0. We propose that 1) intrinsic folding of HKbeta, 2) bonding forces between subunits, and 3) oligosaccharides on HKbeta provide a luminal protein domain that resists gastric lytic conditions. Protein folding that protects susceptible charged amino acids and is maintained by disulfide bonding and hydrophilic oligosaccharides would provide a stable structure in the face of large pH changes. The H-K-ATPase is an obvious model, but other gastric luminally exposed proteins are likely to possess analogous protective specializations.  相似文献   

17.
尖顶羊肚菌对急性酒精性胃黏膜损伤保护作用研究   总被引:3,自引:0,他引:3  
研究尖顶羊肚菌菌丝体水提液对酒精引起的大鼠急性胃黏膜损伤的保护作用。以95%乙醇诱导的大鼠胃黏膜损伤为模型,测定各组胃黏膜损伤指数,并测定胃黏膜超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽(GSH)含量,采用幽门结扎法,测定大鼠胃酸、胃蛋白酶与胃黏液分泌的量。结果表明羊肚菌中、高剂量能明显降低胃黏膜损伤指数(p<0.05);羊肚菌不能抑制胃酸的分泌(p>0.05),但是能增加胃蛋白酶与胃黏液的分泌(p<0.05);95%乙醇能引起胃黏膜SOD活性与GSH的降低,MDA含量的增加,给予羊肚菌能明显抑制这一现象。结果说明羊肚菌对急性酒精性胃黏膜损伤的保护作用是与增加胃黏液分泌与提高机体抗氧化能力有关。  相似文献   

18.
Although epidermal growth factor (EGF) accelerates gastric mucin biosynthesis, information on whether its activation is limited to the specific mucus-producing cells is lacking. In this paper, we investigated the effects of EGF on mucin biosynthesis and the expression of its receptor in distinct layers of rat gastric mucosa, including the possible participation of nitric oxide (NO). EGF enhanced the incorporation of [3H]glucosamine and [14C]threonine into the mucin in the full-thickness tissues of the gastric mucosa. This stimulation disappeared on the removal treatment of the surface mucosal layer chiefly consisting of surface mucus cells. The EGF-induced increase in [3H]-labeled mucin in the full-thickness mucosa was not suppressed by either NG-nitro-L-arginine (10(-5) M) or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (10(-5) M). The EGF-receptor-mRNA expression was high in the surface mucosal layer but low in the deep and muscle layers of the stomach. These results suggest that EGF-induced stimulation of mucin biosynthesis is limited to the surface mucus cells of the rat gastric mucosa and is independent of the NO pathway.  相似文献   

19.
The mucosal barrier in combination with innate immune system are the first line of defense against luminal bacteria at the intestinal mucosa. Dysfunction of the mucus layer and bacterial infiltration are linked to tissue inflammation and disease. To study host–bacterial interactions at the mucosal interface, we created an experimental model that contains luminal space, a mucus layer, an epithelial layer, and suspended immune cells. Reconstituted porcine small intestinal mucus formed an 880 ± 230 µm thick gel layer and had a porous structure. In the presence of mucus, sevenfold less probiotic and nonmotile VSL#3 bacteria transmigrated across the epithelial barrier compared to no mucus. The higher bacterial transmigration caused immune cell differentiation and increased the concentration of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α; p < .01). Surprisingly, the mucus layer increased transmigration of pathogenic Salmonella and increased secretion of TNF-α and IL-8 (p < .05). Nonmotile, flagella knockout Salmonella had lower transmigration and caused lower IL-8 and TNF-α secretion (p < .05). These results demonstrate that motility enables pathogenic bacteria to cross the mucus and epithelial layers, which could lead to infection. Using an in vitro coculture platform to understand the interactions of bacteria with the intestinal mucosa has the potential to improve the treatment of intestinal diseases.  相似文献   

20.
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号