首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An examination of the meiotic pattern of chromosome 1 isolated from a feral mouse population and containing a double insertion (Is) of homogeneously staining regions (HSRs) was carried out. The region delineated by the proximal breakpoint of Is(HSR;1C5) 1Icg and the distal breakpoint of Is(HSR;1E3)2Icg is desynapsed during the early pachytene stage and heterosynapsed at the midpachytene, as shown by electron microscopic analysis of synaptonemal complexes. The HSRs have no effect on the segregation of chromosome 1 in heterozygous mice. The lack of homosynapsis in the region under study causes chiasmata redistribution in heteromorphic bivalents. In normal males, single chiasmata are located in the medial part of the chromosome. In heterozygotes, this segment is heterosynapsed and unavailable for recombination. This leads to a significant decrease in the frequency of bivalents bearing single chiasmata. The total number of chiasmata per bivalent is much higher in heterozygous males than in normal ones. The recombination frequency between proximal markers fz and In also is higher in heterozygous animals. The increase in the total chiasma number in the heteromorphic bivalent is due to the addition of double chiasmata located mostly at precentromeric and pretelomeric regions of the chromosome.  相似文献   

2.
In wild mouse populations of Siberia, animals with a new variant of chromosome 1 were found. The total length of this chromosome was 1.3 times as great as the normal homologue. The G-banding technique revealed two additional insertions Is(HSR; 1C5)1Icg and Is(HSR; 1E3)2Icg located between bands 1C5 and 1D, and 1E3 and 1E4, resp. The C-banding of both the insertions was positive and lighter than that of the centromeric heterochromatin. The size of each insertion was approximately 15% of new variant of chromosome 1. No meiotic disturbances were found in heterozygous male mice. Chromosome 1 with insertions has been introduced into the laboratory mouse stock.  相似文献   

3.
Electron microscopic (EM) analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in chromosome 1 of the house mouse reveals that synapsis and synaptic adjustment are dependent on the size and location of the inversions and interaction between the latter. In(1)1Icg contains insertions of the inverted repeats Is(HSR;1C5)1Icg and Is(HSR;1D)2Icg and an inverted euchromatic region. Synaptic adjustment of the D-loops by shortening of the asynapsed segments of the lateral elements belonging to the insertions occurs at the late zytogene to early pachytene stage. Synaptic adjustment of the inversion loops takes place at early to late pachytene. A delay in adjustment was found in the double heterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. A correspondence between the lifespan of asynapsis in inverted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

4.
By means of genetic and cytogenetic analysis, the effect of cis heterozygosity for two insertions--Is(HSR; 1C5)1Icg and Is (HSR; 1E3)2Icg was studied. It was shown that the proximal point of Is is situated 8 cM distally from the ln gene. Crossing over is completely suppressed in the intermedial part of Chr. 1, where a single chiasma appears in normal mice. The frequency of double chiasmata in heterozygotes is significantly increased. They are localized at precentromeric and pretelomeric parts of Chr. 1. It is supposed that recombination block in the central region leads to a shift of the potential chiasmata in telomeric regions. This shifted telomeric chiasmata, in turn, allow the appearance of the second chiasmata in the centromeric region.  相似文献   

5.
Electron microscope analysis of surface-spread synaptonemal complexes (SC) in oocytes and spermatocytes from double cis heterozygotes for Is(HSR; 1C5)1Icg and Is(HSR; 1E3)2Icg was carried out. Aberrant chromosomes were isolated from the feral population of Mus musculus musculus of Novosibirsk. They contain homogeneously stained regions of total length of about 30% of Chr 1 mitotic metaphase. Heteromorphic bivalents of Chr1 with different lengths of the lateral elements of SC and the loop in the intermedial position were revealed in 4.4% spermatocytes and 20% oocytes of heterozygous animals. The loop size depends on the stage of meiosis: it is maximal at late zygotene and decreases up to disappearance during pachytene.  相似文献   

6.
Electron microscopic analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in the Chromosome 1 of the house mouse reveals a dependence of synapsis and synaptic adjustment on the size and location of the inversions and their interaction. In(1)1Icg contains the insertions of inverted repeats Is(HSR: 1C5)1Icg and Is(HSR: 1I)2Icg as well as inverted euchromatic region. The synaptic adjustment of the D loops by shortening of asynapsed parts of the lateral elements of SC belonging to the insertions occurs at late zygotene-early pachytene stage. After that the synaptic adjustment of the inversion loops takes place. A delay in adjustment was found in diheterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. Morphological alterations of the asynapted terminal segments of lateral elements preventing synaptic adjustment were found in single and double heterozygotes for In(1)1Rk and In(1)12Rk. Correspondence between the size of asynapted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

7.
A high resolution analysis of G-band pattern of normal and aberrant chromosome 1 bearing two linked insertions of homogeneously staining regions (HSRs) in the house mouse (Mus musculus musculus) reveals an inverted pattern of the euchromatic region between the HSRs. On the basis of this analysis, a hypothesis on the causes for appearance of the aberrant chromosome was put forward: the double insertion is a result of inversion of the chromosome 1 of Mus musculus domesticus bearing a single long insertion. The proximal breakpoint is localized inside the HSR and the distal one--between subbands E3 and E4. From the point of view of these data, new symbols for the aberrations are proposed: Ls (HSR, 1C5) 1Icg--for the proximal insertion, Is(HSR, 1D)21cg--for the distal one, In (1) 1Icg--for the inverted region, including the bands D, E1-E3 and the insertion Is(HSR 1D)21cg.  相似文献   

8.
House mice carrying aberrant chromosome 1 with an insertion of homogeneously stained regions (HSR) have been studied. The mice were collected in the North Caucasus, Chita and Amur oblasts, Spitzbergen and Kunashir Islands, Altai krai, Khabarovsk krai, Primorye, Sakhalin, Kamchatka, Turkmenistan, and Kazakhstan. In these mice, the aberrant chromosomes were assigned to the “Asian” type, i.e. they carried two HSR insertions. The aberrant chromosome 1 in house mice from different geographic regions was shown to differ in size of HSR, staining intensity, and some other features of Q-H, C, and G-banding, which suggests independent origin of this aberration in house mouse populations from different taxa and regions. A novel variant of chromosome 1 in mice of the subspecies M. m. wagneri was found.  相似文献   

9.
Iakimenko LV  Korobitsyna KV 《Genetika》2007,43(8):1084-1090
House mice carrying aberrant chromosome 1 with an insertion of homogeneously stained regions (HSR) have been studied. The mice were collected in the North Caucasus, Chita and Amur oblasts, Spitzbergen and Kunashir Islands, Altai krai, Khabarovsk krai, Primorye, Sakhalin, Kamchatka, Turkmenistan, and Kazakhstan. In these mice, the aberrant chromosomes were assigned to the "Asian" type, i.e. they carried two HSR insertions. The aberrant chromosome 1 in house mice from different geographic regions was shown to differ in size of HSR, staining intensity, and some other features of Q-H, C, and G-banding, which suggests independent origin of this aberration in house mouse populations from different taxa and regions. A novel variant of chromosome 1 in mice of the subspecies M. m. wagneri was found.  相似文献   

10.
The DNase I sensitivity of three different chromatin regions in mouse testicular cells was analysed by in situ nick translation with biotin-dUTP combined with various counterstaining techniques. The regions were: (i) the constitutive centromeric heterochromatin, (ii) an interstitial C-band positive insertion on chromosome 1, Is(HSR1;C5)1Lub, and (iii) the chromatin containing rDNA (designated nucleolar chromatin herein). Incorporated biotin was detected either by the horseradish peroxidase reaction with diaminobenzidine (DAB) or the alkaline phosphatase reaction with fast red. The latter resulted in a water insoluble red precipitate, which was easily removable by any organic solution thus allowing the application of various counterstaining protocols. DNase I sensitivity of the three chromatin regions was screened in different cell types of the mouse testis. The interstitial Is(HSR) region was highly DNase I sensitive when it was recognizable by strong mithramycin fluorescence. The centromeric heterochromatin was DNase I resistant when it was compacted into microscopically visible chromosomal structures (mitosis, pachytene, metaphase I and II). In interphase nuclei from Sertoli cells and spermatogonia it became highly DNase I sensitive. In round spermatids it displayed medium DNase I sensitivity. Nucleolar chromatin was not labelled by in situ nick translation when silver staining demonstrated strong protein production. Sperm cells were highly DNase I sensitive from stages 11 to 15, but resistant as mature spermatozoa.  相似文献   

11.
A cloned DNA sequence that is specific for a germ line homogeneously staining region (HSR) on chromosome 1 of the mouse was found to be homologous to a single copy sequence in non-HSR mice. By in situ hybridization, the sequence in non-HSR mice was localized to approximately the same site as the insertion site of the HSR on chromosome 1 of HSR mice, indicating in situ amplification of the HSR.  相似文献   

12.
We have investigated the replication pattern of a large, homogenously staining chromosome region (HSR) in two antifolate-resistant Chinese hamster cell lines. This region is believed to be the location of an amplified genetic sequence which includes at least the gene coding for dihydrofolate reductase and which may be present in as many as 200 copies. It is shown that the HSR in both cell lines is among the first chromosome regions to begin DNA synthesis after reversal of an early G1 block. In cells synchronized in the S period with hydroxyurea, it is also clear that the HSR in both cell lines begins replication at many sites within its length in early S. The replicons comprising the HSR therefore may respond to a common initiation signal in early S. In one cell line (A3), replication of the HSR requires, at most, 3 hours of a 7-hour S period; in a second line (MQ19), replication proceeds for approximately 5 hours. In neither line does replication of the HSR occur concomitantly with synthesis of characteristic late replicating regions. These results were confirmed in exponential cultures using a retroactive labeling technique. The significance of these findings is discussed with reference to the possible origin and arrangement of the amplified sequence in these two cell lines.  相似文献   

13.
The heat shock RNA-1 (HSR1) is a noncoding RNA (ncRNA) reported to be involved in mammalian heat shock response. HSR1 was shown to significantly stimulate the heat-shock factor 1 (HSF1) trimerization and DNA binding. The hamster HSR1 sequence was reported to consist of 604 nucleotides (nt) plus a poly(A) tail and to have only a 4-nt difference with the human HSR1. In this study, we present highly convincing evidence for bacterial origin of the HSR1. No HSR1 sequence was found by exhaustive sequence similarity searches of the publicly available eukaryotic nucleotide sequence databases at the NCBI, including the expressed sequence tags, genome survey sequences, and high-throughput genomic sequences divisions of GenBank, as well as the Trace Archive database of whole genome shotgun sequences, and genome assemblies. Instead, a putative open reading frame (ORF) of HSR1 revealed strong similarity to the amino-terminal region of bacterial chloride channel proteins. Furthermore, the 5′ flanking region of the putative HSR1 ORF showed similarity to the 5′ upstream regions of the bacterial protein genes. We propose that the HSR1 was derived from a bacterial genome fragment either by horizontal gene transfer or by bacterial infection of the cells. The most probable source organism of the HSR1 is a species belonging to the order Burkholderiales.  相似文献   

14.
Crossing over in the left arm of chromosome 2 (2L) was studied in successive broods of Drosophila melanogaster females carrying intact chromosomes (+/+), inversion Muller-5 in the X chromosome (M-5/+), and insertion of the Y-chromosome material into region 34A (Is(2L)/+). The regions net-dp, dp-b, b-pr and pr-cn were examined in 14 two-day-old broods of females +/+ and M-5/+ and in 10 broods of females Is(2L)/+. In all lines, the highest level of crossing over was in the first three broods (eggs laid during the first 6 days of oviposition) and the lowest level in the broods 7-8 (eggs laid at days 14-16). A high rate of crossing over in the first broods of females +/+ and M-5/+ was due to an increment of exchanges in the proximal euchromatin regions (b-pr and pr-cn) and to an increase in the number of tetrads with double exchanges. These changes are similar to a pattern of the interchromosomal effect on crossing over (IEC) in structurally normal chromosomes. In Is(2L)/+ females, a high level of crossing over was due to extensive exchanges in the interstitial regions net-dp and dp and an increase in the number of tetrads with single exchanges. These changes resembled the IEC in rearranged chromosomes (in this case, in chromosomes bearing an insertion). Thus, the age changes of crossing over are similar to the consequences of the presence or absence of IEC. Age changes in crossing over in a chromosome depended both on the local rearrangements in this chromosome (the local effect on crossing over, LEC) and on rearrangements in nonhomologous chromosomes (IEC). In the first broods, both LEC and IEC decreased with an increase in the level of crossing over. In subsequent broods, the reduced level of crossing over was accompanied by an increase in both LEC and IEC. This suggests that the mechanisms responsible for the age changes in crossing over and IEC may have common steps. The contact model of crossing over may explain the similarity between the age changes in crossing-over and IEC. It is suggested that both phenomena result from delayed determination of crossing over in a meiotic cell. This may occur due to the retarded formation of the local contacts in one of the homologous chromosome pairs or because a higher number of local contacts is required to trigger crossing over in a meiotic cell (of early age).  相似文献   

15.
Chromosomes with homogeneously staining regions (HSR) were analysed in a subclone of the H4 rat hepatoma cell line, where they represent amplification of the ribosomal RNA (rRNA) genes. Detailed G-band analysis of the subclone revealed that an HSR on the short arm of chromosome 3 became unstable and changed its position within the chromosome. The evolution of this marker chromosome was associated with the terminal deletion of the normal long arm of the HSR-bearing chromosome 3 and may have involved ring formation as a result of fusion between the HSR on the short arm and the broken end of the long arm. Evidence was obtained for breakage at different sites within the ring, producing chromosomes with HSRs located terminally on either the long arms or both arms. The terminally located HSR underwent elongation in some cells presumably as a result of a breakage-fusion-bridge cycle characteristic of instability due to telomeric loss. It is suggested that terminally located HSRs may generally occur this way.  相似文献   

16.
Unusual chromosome architecture and behaviour at an HSR   总被引:2,自引:0,他引:2  
Sullivan BA  Bickmore WA 《Chromosoma》2000,109(3):181-189
Amplification of sequences within mammalian chromosomes is often accompanied by the formation of homogeneously staining regions (HSRs). The arrangement of DNA sequences within such amplicons has been investigated, but little is known about the chromosome structure or behaviour of these unusual regions. We have analysed the metaphase chromosome structure of the dihydrofolate reductase (DHFR) amplicon of CHOC400 cells. The chromatin in this region contains hyperacetylated nucleosomes yet, at the same time, appears to be densely packed like heterochromatin. The region does not bind heterochromatin proteins. We show that the dense packing of the region is restricted to DNA located close to the chromosome core/scaffold. In contrast, levels of the chromosome scaffold protein topoisomerase II at HSRs are the same as those found at other euchromatic locations. Metaphase chromosome condensation of the HSR is shown to be sensitive to topoisomerase II inhibitors, and sister chromatids often appear to remain attached within the HSRs at metaphase. We suggest that these features underlie anaphase bridging and the aberrant interphase structure of the HSR. The DHFR amplicon is widely used as a model system to study mammalian DNA replication. We conclude that the higher-order chromosome structure of this amplicon is unusual and suggest that caution needs to be exercised in extrapolating data from HSRs to normal chromosomal loci. Received: 19 October 1999; in revised form: 13 December 1999 / Accepted: 27 December 1999  相似文献   

17.
Insertion of the Y-material into the 34A Is(Y;2L)419 region diminished recombinational length of the left arm of chromosome 2 (2L) from 49.1 to 15.0 cM. This decrease was compensated by the increase of recombinational length in the other chromosomal arms due to interchromosomal effect. The increase in the X chromosome was 11.4 cM; it was 2.0 cM in chromosome 2R; and 17.3 cM in chromosome 3. The insertion-induced decrease of the 2L recombinational length could be eliminated by evoking interchromosomal effects from other chromosomes. The presence of the inversion in the X chromosome increased the 2L recombinational length from 15.0 to 30.2 cM, while its association with the In(3LR)D inversion increased this length to 45.6 cM. The interchromosomal effects in the inductor chromosome were induced by distortion of pairing rather than by the low recombinational length of this chromosome. For example, the interchromosomal effect of the insertion on the X chromosome was higher in the Is(Y;2L)/+; In(3LR)/+ females than in the Is(Y;2L)/+; +/+ females (15.4 versus 11.5 cM), though the 2L recombinational length in the females with the former genotype (30.2 cM) was twofold higher than in females with the latter genotype (15.0 cM). It is suggested that chromosomal rearrangement hampers the development of local contacts in the homologues. This delay affects crossing over in the given pair of homologues in two ways: directly via diminishing the number of exchange sites, and indirectly through regulatory delay of crossing over determination in the meiocyte. The effects of the insertion on crossing over in nonhomologous chromosomes are implemented by through the second way.  相似文献   

18.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

19.
We have used a modification of the Southern hybridization method to analyze the removal of UV-induced pyrimidine cyclobutane dimers from the domain of the c-myc oncogene. The study was performed in human COLO320HSR cells, which exhibit a 30- to 40-fold amplification of c-myc that is maintained in a marker chromosome as a homogeneously staining region. Intron 2 and the region upstream from the gene showed better dimer removal than intron 1 or the region downstream from the c-myc gene. Regions showing less repair coincide with regions that are hotspots for mutations and chromosome translocations. Therefore, it is proposed that the inefficiency of DNA repair may play an important role in the origin of c-myc rearrangements.  相似文献   

20.
This study centers on marker chromosomes carrying expanded chromosomal regions which were observed in two independent derivatives of the AA12 murine fibrosarcoma line, the 10–3 M MTX-res H2 and the 5×10–7 M MTX-res E. Previous characterization of the marker chromosomes of MTX-res variants showed their common derivation from a marker chromosome (m) of the parental line, endowed with two interstitial C-bands. Cytogenetic evidence pointed to one C-band ofm as the site involved in the chromosomal rearrangements leading to the HSR/ASR chromosomes. ISH of a3H-labeled satellite DNA probe allowed satellite sequences flanking the HSR/ASR in the marker chromosomes, where the C-band was no longer visible, to be detected. FISH experiments using biotinylated DHFR and satellite DNA probes showed that the respective target sequences are contiguous in new marker chromosomes. They also allowed inter- and intrachromosomal rearrangements to be seen at DHFR amplicons and satellite sequences. Double-color FISH using digoxygenated satellite DNA and biotinylated pDHFR7 showed that in a marker chromosome from the H2 cell line the two target sequences are not only adjacent, but closer than 3 Mb, as indicated by overlapping of the different fluorescence signals given by the two probes. Another marker chromosome in the E variant was shown to display a mixed ladder structure consisting of a head-to-head tandem of irregularly-sized satellite DNA blocks, with two symmetrical interspersed DHFR clusters.Abbreviations DHFR dihydrofolate reductase - MTX Methotrexate - HSR Homogeneously Staining Region - ASR Abnormally Staining Region - DM Double Minute - ISH In Situ Hybridization - FISH FluorescenceIn Situ Hybridization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号