首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody to fibrinogen/fibrin related products (Anti-F) was stimulated during the course of Plasmodium chabaudi, Babesia rodhaini, and Trypanosoma lewisi infections in rats. Titers of this autoantibody remained elevated in serum from rats that had recovered from each of the infections. Column chromatographic studies indicated that Anti-F was a 19S globulin, possibly IgM. During acute infections high titers of Anti-F were associated with elevated titers of cold-active hemagglutinin (CAH) and immunoconglutinin (IK) and all were associated with anemia and elevated parasitemia. Titers of Anti-F and IK, but not CAH, remained elevated in serum of recovered rats. The presence of Anti-F indicated that the coagulation system had been activated during each infection to release fibrinogen/fibrin-related products (FRP) to serve as antigen(s) for Anti-F. Since IK is antibody to the third component of fixed complement, it could be assumed that complement fixing antigen-antibody complexes were also present during the acute stage of each infection. The possibility that complexes of FRP and Anti-F could have contributed to anemia in each infection is discussed.  相似文献   

2.
Fresh plasma from rats infected with Plasmodium chabaudi, incubated with splenic lymphocytes from rats immunized 5 days previously with sheep blood cells, suppressed the capacity of the spleen cells to produce antibody against the sheep cells as was indicated by reductions in the numbers of hemolytic Jerne plaques formed by the treated cells. The effect was maximal in plasma of rats drawn on the 7th day of infection at a time the rats experienced a hemolytic crisis. Serologic studies indicated that the active plasma contained elevated titers of antibody against fibrinogen products, antibody against the soluble serum antigens elaborated during blood infections and antibody against the third component of fixed complement (C3) or immunoconglutinin. Titers of lytic complement were reduced and amounts of soluble immune complex precipitated with polyethylene glycol 6000 were elevated. The active plasma may have affected the antibody producing cells by one or both of two mechanisms. Soluble antigen-antibody complexes could have interacted with Fc receptors of activated lymphocytes to alter their function. Alternatively, the complexes may have fixed complement and interacted with receptors for fixed C3 on the lymphocyte membrane. Such cells, being coated with the antigen for immunoconglutinin, could be altered by immunoconglutination. Inasmuch as the immune complexes in the active plasma were generated in vivo, it would seem unlikely that the plasma would contain significant amounts of complex that had not fixed complement. With immunoconglutinin present in the plasma, alteration of the cells by immunoconglutination seems a more likely possibility.  相似文献   

3.
Suppression of antibody producing splenic lymphocytes by plasma from rats infected with Plasmodium chabaudi malaria was confirmed. Suppressive activity was found in plasma drawn on the sixth, seventh and eighth day of infection. It was temporally associated with anemia, elevated levels of soluble immune complex, reduced titers of lytic complement and elevated titers of immunoconglutinin (IK) in the plasma. Heat inactivation of the plasma to destroy complement and removal of IK by absorption did not reduce the suppressive activity. Incubating the plasma-treated lymphocytes with normal rat complement largely, but not completely, reversed the suppressive action. Soluble immune complexes prepared from bovine serum albumin (BSA) and antiBSA (BSA-antiBSA) alexinated complex (BSA-antiBSA-C') and immunoconglutinated complex (BSA-antiBSA-C'-IK) each suppressed the capacity of splenic lymphocytes from rats immunized with sheep blood cells to produce hemolytic Jerne plaques. Incubating the complex-treated cells with fresh complement largely reversed the suppressive activity. It is suggested that the suppressed responses of lymphocytes from malarious animals to antigens or mitogens, reported by others, may have been in part induced by complexes in blood of the animals, and that antibody producing cells might also have been suppressed. Since suppressive activity was not influenced by complement inactivation, but was reversed when plasma-treated cells were incubated with fresh complement, it is suggested that the hypocomplementemic state of suppressive plasma may have contributed to immunosuppression.  相似文献   

4.
A panel of ten monoclonal antibodies made against Plasmodium chabaudi and Plasmodium yoelii infected mouse erythrocytes were used for characterization of antigens present in murine malaria. Screening of the antibodies in ELISA with different fractions of infected erythrocytes revealed both species-specific and fraction-specific monoclonal antibodies (MAbs), but also MAbs cross-reacting between the species. Two MAbs bound normal erythrocyte components. Subcellular localization of the target antigens was studied by immunofluorescence and their molecular identity by immunoblotting after SDS-PAGE. Of the MAbs to P. yoelii, one reacted with a cytoplasmic granule component of 137 k and two others reacted with vacuole-associated antigens of 26 k and 25/70/73 k, respectively. The latter antibodies cross-reacted with P. chabaudi antigens. Of the MAbs to P. chabaudi, all were species specific, one reacting with parasite surface antigens of 79 and 250 k and two with a vacuole-associated antigen of 70 k.  相似文献   

5.
In this report, we investigated the effect of ODN containing immunostimulatory CG motifs as adjuvant with soluble antigen (SA) from Leishmania donovani. BALB/c mice were vaccinated with the soluble antigen with or without CpG-ODN as adjuvant and then challenged with L. donovani metacyclic promastigotes. CpG-ODN alone resulted in partial protection against challenge with L. donovani. Immunization of mice with SA and CpG-ODN showed enhanced reduction in parasite load ( approximately 60%) when compared to SA ( approximately 40%) immunized mice. Immunization with SA by itself resulted in a mixed Th1/Th2 response whereas co-administration of SA with CpG-ODN resulted in a strong Th1 promoting isotype as they together promoted production of immunoglobulin G2a. Leishmania-specific Th1 cytokine response was induced by co-administering CpG-ODN and SA as they together promoted production of IFN-gamma and IL-12. In the present study, we demonstrate that immunostimulatory phosphorothioate-modified ODN are promising immune enhancers for vaccination against visceral leishmaniaisis.  相似文献   

6.
The antibody response of mice to Plasmodium chabaudi adami and Plasmodium yoelii has been compared using a solid phase isotype-specific radioimmunoassay and sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Serological cross-reactivity between these parasites was substantial. Studies using a radioimmunoassay detecting all classes of malaria-specific antibody demonstrated that during the early part of infection it was not possible to distinguish between homologous and heterologous reactions. Immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 50% or more of the protein antigens detected were apparently shared by both parasites although the intensity of bands was always greater with homologous reactions. However, the distribution of isotypes in the antibody (Ab) response differed in the two infections. P. chabaudi infections were characterized by a predominant and persistent IgM response, moderate IgG2 and IgG3 and little significant IgG1 response during a primary infection. By contrast, IgM antibodies were transient in P. yoelii infection, IgG2 was the predominant isotype, and both IgG1 and IgG3 antibodies were present during a primary infection. These differences in isotypes were also detected when sera were tested on the heterologous antigen extracts suggesting that antigens shared by P. chabaudi and P. yoelii do not necessarily induce similar antibody responses in the two infections.  相似文献   

7.
The use of simian agent 8 (SA8) as an antigen for B virus (BV) antibody detection was evaluated in cynomolgus monkeys. Seventy-two sera judged as positive using BV antigen were all positive when the SA8 antigen was used. Out of 28 BV-negative sera 2 were positive against the SA8 antigen and one serum was classified as indeterminate. The present data indicates that detection of BV antibody can be achieved accurately and safely by enzyme-linked immunosorbent assay (ELISA) using SA8 antigen.  相似文献   

8.
Susceptible A/J and more resistant C57BL/6J mice were infected with Plasmodium chabaudi chabaudi 54X, P.c. chabaudi AS and Plasmodium chabaudi adami 408XZ. As expected, most C57BL/6J mice survived the infections with the different isolates. But in contrast to previous observations, not all A/J mice succumbed to infection: just over 50% of A/J mice survived infections with P.c. chabaudi 54X, while 80% survived P.c. chabaudi AS. The more virulent parasite, P.c. adami 408XZ, was able to kill all A/J mice and 20% of C57BL/6J mice after an intravenous infection with 10(5) pRBC. A detailed study of four parameters of pathology (body weight, body temperature, blood glucose and RBC counts) in both mouse strains after a P.c. adami 408XZ infection showed similar patterns to those previously reported after infection with P.c. chabaudi AS. These data suggest that environmental factors as well as parasite polymorphisms might influence the severity of malaria between susceptible and resistant mice.  相似文献   

9.
The effects of primary, patent Plasmodium berghei infection in Sprague-Dawley rats during pregnancy upon the course of infection and the humoral antibody response to malaria in their offspring were examined. Malaria specific antibody determined by an indirect fluorescent antibody test correlated well with the parasitologic profiles of each experimental group. Utilization of foster mother groups indicated passive transfer of protective antibody through milk. Evidence for in utero sensitization by soluble malaria antigens was shown by an anamnestic-like antibody response during subsequent infection of offspring from infected mothers.  相似文献   

10.
To explore cell-mediated immune mechanisms in host defense against malaria, we utilized a murine model system in which antibody-independent mechanisms of immunity are known to play a major role. Splenic T lymphocytes obtained from Plasmodium chabaudi adami-immune mice were maintained in vitro by using IL 2-containing medium and frequent antigenic stimulation. These IL 2-propagated T lymphocytes were characterized for their antigen reactivity, surface phenotype, and ability to confer protection to P. chabaudi adami in reconstituted mice. IL 2-dependent T lymphocytes maintained their capacity to proliferate in vitro to solubilized parasite preparations of homologous but not heterologous antigens. Antigen-specific proliferation was H-2 restricted, requiring antigen-presenting cells of the correct haplotype. More importantly, these propagated T lymphocytes were effective in adoptively transferring protection to both athymic nude mice and sublethally irradiated recipients. The protective response was dose dependent and antigen specific, because recipients resisted challenge infection with P. chabaudi adami but not with the heterologous parasite Plasmodium yoelii 17X. Pretreatment of the IL 2-propagated cells with anti-Thy-1.2 and complement abrogated their ability to transfer protection. Collectively, these results suggest that T lymphocytes obtained from P. chabaudi adami-immune mice, propagated and expanded in vitro, retain antigen specificity and passive protective activity in vivo.  相似文献   

11.
In this paper, in vivo data are presented that suggest a role for host recognition of erythrocyte band 3 in the control of malaria parasitaemia. The course of Plasmodium chabaudi chabaudi AS acute infection in CBA/Ca mice was suppressed or enhanced as a result of treatment on two occasions with enriched preparations of normal erythrocyte band 3 in adjuvant. Co-treatment with band 3 and a recombinant polypeptide encoding the C-terminal region of the P. c. chabaudi AS merozoite surface protein 1, which on its own had no clear effect on parasitaemia, appeared to modulate band 3-induced inhibition. Despite several-fold reductions in ascending parasitaemias in some band 3-immunized groups, there was a lack of obvious or unexpected anaemia prior to, or during infection, indicating a degree of specificity in the parasitaemia modifying response for infected rather than uninfected erythrocytes. These findings support a role for modified host recognition of erythrocyte band 3 in the partial immunity that transcends phenotypic and genotypic antigenic variation by malaria parasites.  相似文献   

12.
We have used a monoclonal antibody (mAb 7C5B71) raised against the erythrocytic stages of Plasmodium vivax to identify a 148-kDa P vivax protein antigen (Pv-148) which crossreacts with an antigenically homologous 190-kDa protein of P. chabaudi (Pc-190). During parasite intraerythrocytic development Pv-148 and Pc-190 are exported into the host cell cytosol and become located in the surface membrane of the infected erythrocyte. Immunofluorescence confocal microscopy and immunoelectron microscopy studies showed that both Pv-148 and Pc-190 are released from the parasite and exported to the host cell cytoplasm in association with tubovesicular membrane (TVM) structures. Fluorescent in vivo labelling of P. chabaudi with Bodipy-ceramide followed by immunofluorescence staining with the mAb supported the association of antigenically homologous Pc-190 with TVM structures. In the presence of brefeldin A (BFA), secretion of antigenically homologous Pc-190 into the host cell cytoplasm was inhibited and the antigen remained in the parasite cytoplasm. BFA also arrested the maturation of the parasite. Taken together these results suggest that Pv-148 and Pc-190 are related parasite proteins that are transported into the host cell through a BFA-sensitive secretory pathway.  相似文献   

13.
The nonspecific B-cell response induced by infecting mice with two nonlethal malaria parasites, Plasmodium chabaudi adami and Plasmodium yoelii, was analyzed in an isotype-specific reverse plaque assay. Our results showed different isotypic patterns in the two infections, although cells secreting immunoglobulin of all isotypes were increased to some extent. P. yoelii induced large increases in secreting cells of all isotypes; IgG2a-secreting cells were increased out of proportion to those of the other IgG classes. P. chabaudi induced large increases in secreting cells of all isotypes except IgG1. In addition, there was not a disproportionate increase in cells secreting IgG2a. The data show that these "polyclonal" responses are different during each infection. There are marked similarities between the distribution of "nonspecific isotypes" and the specific antibodies formed in each infection.  相似文献   

14.
15.
ABSTRACT. Using fluorogenic substrates and polyacrylamide gels we detected in cell-free extracts of Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei only a single aminopeptidase. A comparative study of the aminopeptidase activity in each extract revealed that the enzymes have similar specificities and kinetics, a near-neutral pH optima of 7.2 and are moderately thermophilic. Each has an apparent molecular weight of 80,000 ± 10,000, determined by high performance liquid chromatography on a calibrated SW500 column. Whilst the P. c. chabaudi and P. berghei activity co-migrate in native polyacrylamide gels, that of P. falciparum migrates more slowly. The three enzymes can be selectively inhibited by ortho -phenanthroline and are thus metallo-aminopeptidases; however, in contrast to other aminopeptidases the metal co-factor does not appear to be Zn2+.  相似文献   

16.
Zhang, Z.-H., Chen, L., Saito, S., Kanagawa, O., and Sendo, F. 2000. Possible modulation by male sex hormone of Th1/Th2 function in protection against Plasmodium chabaudi chabaudi AS infection in mice. Experimental Parasitology 96, 121-129. We examined the mortality, survival time, and parasitemia in interferon gamma receptor (IFN-gamma R)-deficient (IFN-gamma R(-/-)) and IL-4-deficient (IL-4(-/-)) mice infected with Plasmodium chabaudi AS and compared them with the wild type counterparts (IFN-gamma R(+/+) and IL-4(+/+), respectively). (1) Mortality was higher and survival time was shorter in males of both IFN-gamma R(-/-) and IL-4(-/-) mice infected with P. chabaudi AS, compared with their wild type counterparts, whereas such a difference was not observed in female mice. (2) These differences between males and females were not observed when male mice were castrated; however, female castration had no effect on the data. (3) The rate of parasitemia in both male and female IFN-gamma R(-/-) and IL-4(-/-) mice was higher at some points during the observation than in the wild type counterparts. (4) These results on susceptibility vs resistance to P. chabaudi AS infection can be explained partially by the levels of expression of Th1/Th2 cytokine and chemokine mRNAs in the spleen cells of the infected mice. These results suggest that male sex hormones modulate the function of Th1/Th2 cells and that these T cells counteract the activity of these hormones in protection against P. chabaudi AS infection in mice.  相似文献   

17.
The infection with blood stages of Plasmodium chabaudi chabaudi (AS) was followed in BALB/c and DBA/2 mice. Both strains show a peak parasitemia by 7-9 days after infection, display splenic hypercellularity of T and B cells, thymic atrophy, nearly complete depletion of B cells in the bone marrow, and mount comparable polyclonal IgM and IgG responses in the serum. In contrast, these strains diverge in some aspects of the immune response and susceptibility to infection: while BALB/c survive, 70-80% of DBA/2 die within 2 weeks; BALB/c but not DBA/2 show marked increases in the levels of splenic gamma/delta and regulatory T cells, dendritic cells and macrophages and parasite-specific IgM and IgG levels; however, lower levels of TNF-alpha and IL-12 were observed. These results suggest the relevance of different cell populations that are known to participate/regulate specific antibody responses and cytokine production in the susceptibility to infection.  相似文献   

18.
In vitro, Plasmodium berghei infected erythrocytes incorporated 35S-methionine into 31 polypeptides with molecular weights from 21 kd to 300 kd. Hemoglobin and additional smaller molecular weight polypeptides were labelled with 35S-methionine by a population of uninfected, reticulocyte-rich rat erythrocytes. 3H-glucosamine was incorporated into at least 3 components by Plasmodium berghei infected erythrocytes. Uninfected, reticulocyte-rich rat erythrocytes did not incorporate 3H-glucosamine. Rabbit antisera against small, free plasmodia formed complexes which contained between 12 and 22 of the 31 labelled polypeptides in the 35S-methionine labelled antigen preparation. Rabbit antisera against soluble antigens washed from small, free plasmodia formed complexes containing many of the same labelled plasmodial polypeptides, however the reactions were particularly strong with those components which yielded polypeptides with molecular weights of 25 kd and 31 kd. Rabbit origin antisera against the 2 preparations did not form detectable complexes with the 3H-glucosamine labelled plasmodial components. Sera from rats undergoing progressive P. berghei infection formed complexes containing an increasing number of 35S-methionine labelled plasmodial polypeptides. Hyperimmune rat serum, the only serum protective upon passive transfer into mice, formed complexes containing 7 polypeptides with molecular weights of 35 kd, 75 kd, 80 kd, 92 kd, 100 kd, 150 kd and 190 kd. Antigens containing 1 or more of these polypeptides may be important in the induction of a protective antibody response against the parasite.  相似文献   

19.
Erythrocytes infected with the malaria parasite Plasmodium chabaudi contain the neo-protein Pc90 in their plasma membrane. We investigate origin, membrane disposition, and intraerythrocytic traffic of this Pc90. Metabolic labeling of P.-infected erythrocytes, combined with cell fractionation as well as Western blot analysis and immunoprecipitation using a Pc90-recognizing monoclonal antibody, show that Pc90 is synthesized by early to mid trophozoites and is transported without any apparent processing steps to the erythrocyte membrane. Based upon the inaccessibility of Pc90 from the outside in intact erythrocytes and the water solubility of membrane-associated Pc90, it is concluded that Pc90 is localized on the cytoplasmic face of the host erythrocyte membrane. Immunoelectron microscopy using a Pc90-specific monoclonal antibody and the occurrence of soluble Pc90 in host cell cytosol indicate that the Pc90 is transported in both a 'vesicle-bound' and a 'free' form through the erythrocyte cytoplasm.  相似文献   

20.
Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号