首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yolk sac and the para-aortic splanchnopleura/aorta-genital ridges-mesonephros (P-Sp/AGM) region are the main sites of haematopoietic activity in the mouse embryo at the pre-liver stage of development. By day 11.5 of gestation, the AGM region is capable of autonomous initiation and expansion of definitive haematopoietic stem cells (HSCs). By day 12.5, HSC activity in the AGM region is reduced whilst a second wave of HSCs begins to emerge in the yolk sac. We show here that HSCs emerging in both locations are marked by co-expression of the endothelial-specific marker VE-cadherin and the pan-leukocyte antigen CD45. Phenotypic characterisation using CD31, TIE2, FLK1, Ac-LDL receptors, and CD34 markers demonstrated significant similarities between this VE-cadherin+CD45+ ;double-positive' population and endothelial cells suggesting a common origin for these cells. The double-positive fraction also expressed the stem cell markers Kit, Sca1 and AA4.1. Long-term transplantation experiments demonstrated that the double-positive population, which constituted less than 0.05% of the day 11.5 AGM region and the day 12.5 yolk sac, is highly enriched for HSCs. In vitro assays showed that this population is also enriched for myeloid progenitors. During foetal liver colonization, circulating HSCs remained within the VE-cadherin+ cell fraction, although their phenotypic similarity with endothelial cells became less prominent. Upon liver colonisation the majority of HSCs downregulated VE-cadherin, expression of which was completely lost in the adult bone marrow. Partial loss of VE-cadherin expression in HSCs can be observed extra hepatically in the advanced AGM region by E12.5. Similarly, the CD34+KIT+ population in the placenta, recently identified as a reservoir of HSCs, partly lose VE-cadherin expression by E12.5. By culturing isolated E11.5 AGM region and E12.5 yolk sac we show that the developmental switch from a ;primary' VE-cadherin+CD45+ to a more ;advanced' VE-cadherin-CD45+ phenotype does not require contact of HSCs with the liver and is probably a function of developmental time.  相似文献   

2.
We investigated the developmental potential of hemopoietic progenitors in the aorta-gonad-mesonephros (AGM) region, where the definitive type hemopoietic progenitors have been shown to emerge before the fetal liver develops. By using an assay system that is able to determine the developmental potential of individual progenitors toward the T, B, and myeloid lineages, we show that not only multipotent progenitors but also progenitors committed to the T, B, or myeloid lineage already exist in this region of day 10 fetuses. Bipotent progenitors generating myeloid and T cells or those generating myeloid and B cells were also detected, suggesting that the commitment to T and B cell lineages is in progress in the AGM region. The numbers of these progenitors, however, were only 1/200-1/1000 of those in fetal liver of day 12 fetuses. Such small numbers of progenitors suggest that hemopoiesis has just started in the AGM region of day 10 fetuses. Although most of T cell lineage-committed progenitors in the AGM region generated only a small number of immature T cells, some were able to generate a large number of mature T cells. The detection of various types of lineage-committed progenitors strongly suggests that the AGM region is not only the site of stem cell emergence, but also the site of hemopoiesis, including lineage commitment. The T cell progenitors found in the AGM region may represent the first immigrants to the thymus anlage.  相似文献   

3.
4.
Kyba M  Perlingeiro RC  Daley GQ 《Cell》2002,109(1):29-37
The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.  相似文献   

5.
Previous studies indicated that multipotent progenitors exist in early fetuses that do not contain long-term reconstituting (LTR) activity. However, it remained unclear whether these multipotent progenitors are committed to the hemopoietic lineage or are immature mesodermal cells or hemangioblasts. In this study, we have succeeded in enriching the multipotent progenitors that are capable of generating myeloid, T, and B cells in the LFA-1(-) subpopulation of TER-119(-)c-kit(+)CD45(+) cells from the aorta-gonad-mesonephros (AGM) region of day 10 fetuses. We found that these day 10 AGM LFA-1(-) cells do not show the LTR activity, whereas day 11 AGM LFA-1(-) cells do have such an activity. These results strongly suggest that multipotent progenitors lacking LTR activity emerge as CD45(+) hemopoietic progenitor cells in the AGM region on the 10th day of gestation, and such p-Multi mature into hemopoietic stem cells by acquiring LTR activity.  相似文献   

6.
In the developing mouse embryo the first definitive (transplantable-into-the-adult) haematopoietic stem cells/long-term repopulating units (HSC/RUs) emerge in the AGM region and umbilical vessels on 10-11 days post coitum (d.p.c.). Here, by limiting dilution analysis, we anatomically map the development of definitive HSC/RUs in different embryonic tissues during early colonisation of the liver. We show that by day 12 p.c. the mouse embryo contains about 66 definitive HSC/RUs (53 in the liver, 13 in other tissues), whereas on the previous day the total number of definitive HSC/RUs in the entire conceptus is only about 3. Owing to the length of the cell cycle this dramatic increase in the number of definitive HSC/RUs in only 24 hours is unlikely to be explained purely by cell division. Therefore, extensive maturation of pre-definitive HSCs to a state when they become definitive must take place in the day 11-12 embryo. Here we firstly identify the numbers of HSCs in various organs at 11-13 d.p.c. and secondly, using an organ culture approach, we quantitatively assess the potential of the aorta-gonadmesonephros (AGM) region and the yolk sac to produce/expand definitive HSC/RUs during days 11-12 of embryogenesis. We show that the capacity of the AGM region to generate definitive HSC/RUs is high on 11 d.p.c. but significantly reduced by 12 d.p.c. Conversely, at 12 d.p.c. the YS acquires the capacity to expand and/or generate definitive HSCs/RUs, whereas it is unable to do so on 11 d.p.c. Thus, the final steps in development of definitive HSC/RUs may occur not only within the AGM region, as was previously thought, but also in the yolk sac microenvironment. Our estimates indicate that the cumulative activity of the AGM region and the yolk sac is sufficient to provide the day 12 liver with a large number of definitive HSC/RUs, suggesting that the large pool of definitive HSC/RUs in day 12 foetal liver is formed predominantly by recruiting 'ready-to-use' definitive HSC/RUs from extra-hepatic sources. In accordance with this we observe growing numbers of definitive HSC/RUs in the circulation during days 11-13 of gestation, suggesting a route via which these HSCs migrate.  相似文献   

7.
A major goal in haematopoietic stem cell (HSC) research is to define conditions for the expansion of HSCs or multipotent progenitor cells (MPPs). Since human HSCs/MPPs cannot be isolated, NOD/SCID repopulating cell (SRC) assays emerged as the standard for the quantification of very primitive haematopoietic cell. However, in addition to HSCs/MPPs, lympho-myeloid primed progenitors (LMPPs) were recently found to contain SRC activities, challenging this assay as clear HSC/MPP readout. Because our revised model of human haematopoiesis predicts that HSCs/MPPs can be identified as CD133+CD34+ cells containing erythroid potentials, we investigated the potential of human mesenchymal and conventional murine stromal cells to support expansion of HSCs/MPPs. Even though all stromal cells supported expansion of CD133+CD34+ progenitors with long-term myeloid and long-term lymphoid potentials, erythroid potentials were exclusively found within erythro-myeloid CD133lowCD34+ cell fractions. Thus, our data demonstrate that against the prevailing assumption co-cultures on human mesenchymal and murine stromal cells neither promote expansion nor maintenance of HSCs and MPPs.  相似文献   

8.
9.
Hematopoietic stem cells (HSC) are found in several independent sites embryonically. Loss-of-function studies indicated that Notch1, but not Notch2 signaling was required for HSC emergence from the aortic-gonado-mesonephros (AGM) region. We previously showed that constitutive Notch1 activation impaired primitive erythroid differentiation, but its effects on HSC emergence from the AGM region were not studied. To further define specific roles of Notch receptors, we characterized HSC in mouse embryos expressing either Notch1 intracellular domain (ICD) or Notch4ICD in VE-cadherin or SM22α expressing populations. Although embryonic Notch1 activation in VE-cadherin populations led to lethality after E13.5, earlier defects in the fetal liver were observed. Embryos were analyzed at E12.5 to assess hematopoiesis and the phenotype of developing cells in the AGM region. We found that activation of Notch1 in the endothelial compartment in VE-cadherin expressing cells resulted in the absence of intra-aortic clusters and defects in fetal liver hematopoiesis. In contrast, although Notch4 expression is regulated during fetal hematopoiesis, activation of Notch4 in VE-cadherin expressing populations did not affect HSC phenotype, although later vascular remodeling was impaired. Likewise, activation of Notch1 in SM22α positive populations had no significant effect on hematopoiesis. Our results indicate a cell type-dependent activity and distinct features of Notch1 versus Notch4 signaling and their impact on HSC generation.  相似文献   

10.
Hematopoietic stem cells (HSC) have provided a model for the isolation, enrichment and transplantation of stem cells. Gene targeting studies in mice have shown that expression of the thrombopoietin receptor (TpoR) is linked to the accumulation of HSCs capable to generate long-term blood repopulation when injected into irradiated mice. The powerful increase in vivo in HSC numbers by retrovirally transduced HOX4B, a homeotic gene, along with the role of the TpoR, suggested that stem cell fate, renewal, differentiation and number can be controlled. The discovery of the precise region of the mouse embryo where HSCs originate and the isolation of supporting stromal cell lines open the possibility of identifying the precise signals required for HSC choice of fate. The completion of human genome sequencing coupled with advances in gene expression profiling using DNA microarrays will enable the identification of key genes deciding the fate of stem cells. Downstream from HSCs, multipotent hematopoietic progenitor cells appear to co-express a multiplicity of genes characteristic of different blood lineages. Genomic approaches will permit the identification of the select group of genes consolidated by the commitment of these multipotent progenitors towards one or the other of the blood lineages. Studies with neural stem cells pointed to the unexpected plastic nature of these cells. Isolation of stem cells from multiple tissues may suggest that, providing the appropriate environment/ signal, tissues could be regenerated in the laboratory and used for transplantation. A spectacular example of influence of the environment on cell fate was revealed decades ago by using mouse embryonic stem cells (ES). Injected into blastocysts, ES cells contribute to the formation of all adult tissues. Injected into adult mice, ES cells become cancer cells. After multiple passages as ascites, when injected back into the blastocyst environment, ES- derived cancer cells behaved again as ES cells. More recently, the successful cloning of mammals and reprogramming of transferred nuclei by factors in the cytoplasm of oocytes turned back the clock by showing that differentiated nuclei can be "re-booted" to generate again the stem cells for different tissues.  相似文献   

11.
The trans-differentiation hypothesis of adult tissue-specific stem cells has been recently questioned because of insufficient proof that the so-called plasticity experiments were performed on pure populations of tissue-specific stem cells. It was shown recently, for example, that the formation of haematopoietic colonies by muscle cells depended on the presence of haematopoietic stem/progenitor cells residing within the muscle tissue and hence was not related to the plasticity of the muscle stem cells. The explanation for the presence in, or homing into, muscles of haematopoietic stem cells is, however, not clear. In our study, we hypothesised that muscle tissues secrete stromal-derived factor (SDF)- 1, an alpha-chemokine for haematopoietic stem cells (HSC), which could attract HSC circulating in peripheral blood into muscle tissue. We found, using RT-PCR and immunocytochemistry, that SDF-1 was expressed in human heart and skeletal muscles. Moreover, muscle satellite cells, which are pivotal for regeneration of muscle, highly expressed on their surface CXCR4, a G-protein-coupled receptor that binds SDF-1. To determine whether the CXCR4 receptor is functional on muscle satellite/progenitor cells, we stimulated murine satellite cells (the C2C12 cell line) with SDF-1 and demonstrated the phosphorylation of p42/44 MAPK and AKT serine-threonine kinase in these cells. Moreover, we showed that SDF-1 gradient chemoattracts these cells. We postulate that the CXCR4-positive muscle satellite and CXCR4-positive HSC circulating in the peripheral blood compete for occupancy of SDF-1-positive stem cell niches that are present in bone marrow and muscle tissues. Thus, we suggest that competition for common niches by various circulating CXCR4-positive stem cells and their ability to home to the SDF-1-positive niches in various organs, is a better explanation than stem cell plasticity of why (i) haematopoietic colonies can be cultured from muscles and (ii) early muscle progenitors could be cultured from bone marrow.  相似文献   

12.
Elucidating the mechanisms underlying hematopoietic stem cell (HSC) specification and expansion in the embryo has been hampered by the lack of analytical cell culture systems that recapitulate in vivo development. Here, we describe an ex vivo model that facilitates a rapid and robust emergence of multipotent long-term repopulating HSCs in the embryonic AGM region. Because this method includes a cell dissociation step prior to reconstruction of a three-dimensional functional tissue and preserves both stromal and hematopoietic elements, it allowed us to identify the direct ancestry of the rapidly expanding HSC pool. We demonstrate that extensive generation of definitive HSCs in the AGM occurs predominantly through the acquisition of stem characteristics by the VE-cadherin+CD45+ population.  相似文献   

13.
Stromal cell regulation of lymphoid and myeloid differentiation   总被引:3,自引:0,他引:3  
In vitro microenvironmental influences seem to be critical for both B lymphocyte and myeloid differentiation. Studies on murine Dexter cultures and Whitlock-Witte lymphocyte cultures suggest the presence of two critical stromal regulatory cells: an alkaline-phosphatase-positive epithelioid cell and a macrophage. Further data suggest that these cells are capable of producing colony stimulating factor-1, granulocyte-macrophage CSF, a myeloid synergizing activity, and probably separate B cell growth factors. Isolation of a cell line from Dexter stroma was accomplished and this line produced CSF-1, GM-CSF, a pre-B cell and myeloid synergizing activity, and an activity acting on differentiated B cells. We speculate that the Dexter and Whitlock-Witte in vitro culture systems are regulated by factors produced by the two adherent cell types. A lineage nonspecific factor capable of inducing cells into the B lineage or synergizing with interleukin-3, GM-CSF, and CSF-1 is produced, which presumably acts on early stem cells. In addition, the cell line produces GM-CSF, CSF-1, and a factor acting on differentiated B cells. We speculate that in these culture systems, these "terminal differentiating hormones" regulate the final pathway of differentiation, whereas the pre-B-synergizing activity supports early stem cells that can then respond to the other differentiating hormones.  相似文献   

14.
E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.  相似文献   

15.
Mesenchymal stem cells (MSCs) have great clinical potential for the replacement and regeneration of diseased or damaged tissue. They are especially important in the production of the hematopoietic microenvironment, which regulates the maintenance and differentiation of hematopoietic stem cells (HSCs). In the adult, MSCs and their differentiating progeny are found predominantly in the bone marrow (BM). However, it is as yet unknown in which embryonic tissues MSCs reside and whether there is a localized association of these cells within hematopoietic sites during development. To investigate the embryonic origins of these cells, we performed anatomical mapping and frequency analysis of mesenchymal progenitors at several stages of mouse ontogeny. We report here the presence of mesenchymal progenitors, with the potential to differentiate into cells of the osteogenic, adipogenic and chondrogenic lineages, in most of the sites harboring hematopoietic cells. They first appear in the aorta-gonad-mesonephros (AGM) region at the time of HSC emergence. However, at this developmental stage, their presence is independent of HSC activity. They increase numerically during development to a plateau level found in adult BM. Additionally, mesenchymal progenitors are found in the embryonic circulation. Taken together, these data show a co-localization of mesenchymal progenitor/stem cells to the major hematopoietic territories, suggesting that, as development proceeds, mesenchymal progenitors expand within these potent hematopoietic sites.  相似文献   

16.
We have previously shown that maintenance of primitive human hematopoietic stem cells is poor when cultured in contact with marrow stromal feeders. However, when separated from stromal contact, human progenitors can be maintained because adhesion mediated proliferation inhibition does not occur. In this study we demonstrate how the murine fetal liver cell line, AFT024, supports primitive human hematopoiesis better in contact cultures compared to primary feeders. We evaluated if better progenitor maintenance in contact with AFT024 cells can be explained by decreased adhesion itself or decreased adhesion mediated inhibition of proliferation. We show that primitive human hematopoietic cells adhered equally well to AFT024 and primary feeders, such as M2-10B4. Further, contact with metabolically inactive AFT024 cells prevented cell cycle progression and decreased maintenance of primitive progenitors to the same extent as contact with M2-10B4 feeders. However, contact with viable AFT024 feeders did not inhibit proliferation, suggesting that AFT024-factors counteract contact mediated inhibition of proliferation. Cytokine production by M2-10B4 and AFT024 cells was similar. Large-size O-sulfated heparan sulfate glycosaminoglycans, known to be important for hematopoietic support, were found only in AFT024-matrix. We hypothesize that these factors may explain, in part, our observations. Finally, we show that more than 100% of primitive myeloid progenitors could be maintained for at least five weeks when cultured in contact with AFT024 feeders in the presence of Interleukin-3 and Macrophage Inflammatory Protein-1alpha. In conclusion, AFT024 cells produce factor(s), that counteract contact induced growth inhibition of primitive human hematopoietic progenitors, leading to expansion of these cells in contact with the microenvironment.  相似文献   

17.
18.
19.
Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号