首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian cation-independent mannose 6-phosphate/insulin-like growth factor (IGF)-II receptor binds IGF-II with high affinity. Ligands transported by the MPR 300/IGF-IIR include IGF-II and mannose 6-phosphate-modified proteins. By targeting IGF-II to lysosomal degradation, it plays a key role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Although, from our studies we found homologous receptor in calotes but its functional significance was not known. We present here the first report on the calotes MPR 300/IGF-IIR binds IGF-II with Kd of 12.02 nM; these findings provide new and strong evidence that MPR 300/IGF-IIR in Calotes versicolor binds IGFII with high affinity.  相似文献   

2.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

3.
4.
Embryos produced through somatic cell nuclear transfer (NT) or in vitro production (IVP) are often associated with increased abortion and abnormalities thought to arise from disruptions in normal gene expression. The insulin-like growth factor (IGF) family has a major influence on embryonic, fetal and placental development; differences in IGF expression in NT- and IVP-derived embryos may account for embryonic losses during placental attachment. In the present study, expression of IGF-I, IGF-II, IGF-I receptor (IGF-IR), and IGF-IIR mRNAs was quantitated in Day 7 and 25 bovine embryos produced in vivo, by NT, IVP, or parthenogenesis, to further understand divergent changes occurring during development. Expression of the IGF-I gene was not detected in Day 7 blastocysts for any treatment. However, there were no differences (P>0.10) among Day 7 treatments in the amounts of IGF-IR, IGF-II, and IGF-IIR mRNA. For Day 25 conceptuses, there was higher expression of IGF-I mRNA for NT and IVP embryonic tissues than for in vivo embryonic tissues (P<0.05). Furthermore, embryonic tissues from NT-derived embryos had higher expression of IGF-II mRNA than IVP embryonic tissues (P<0.05). Placental expression of IGF-IIR mRNA was greater for NT-derived than in vivo-derived embryos (P<0.05). There were no differences in IGF-IR mRNA across all treatments and tissues (P>0.10). In conclusion, these differences in growth factor gene expression during early placental attachment and rapid embryonic growth may directly or indirectly contribute to increased losses and abnormalities in IVP- and NT-derived embryos.  相似文献   

5.
6.
In recent years, it has become apparent that components of the insulin-like growth factor (IGF) system are involved in the regulation of ovarian follicular development in sheep. The majority of previous studies have concentrated on investigating only a select few components and not the whole system. The aim of the present study was to use five seasonally anoestrous ewes to investigate the expression of mRNA encoding all 10 components of the sheep IGF system among various-sized follicles within the ovary, using sheep-specific ribonucleotide probes and in situ hybridisation. IGF-I mRNA expression was low and did not vary with follicle size. IGF-II mRNA expression was significantly higher (P < 0.05) in small follicles compared to large follicles. Both IGF receptors had significantly higher (P < 0.05) levels of mRNA expression in small follicles, with the type I receptor being expressed to a slightly greater extent than the type II receptor. IGFBP-2, -3, -4 and -5 gene expression followed a similar pattern to IGF-II and the IGF receptors, whereby expression decreased with increasing follicle size. Similar to IGF-I, IGFBP-6 mRNA expression showed little variation with follicle size. IGFBP-1 mRNA expression was observed at low and constant levels, albeit in small and medium-sized follicles only. These data demonstrate that all of the components of the IGF system are produced in the ovine follicle, and for some of the components, their gene expression varied with stage of follicle development. This study further emphasises the importance of IGF-II as the major IGF in the autocrine and paracrine regulation of follicle development in sheep.  相似文献   

7.
8.
We have reported that susceptibility to glucocorticoid- and phenytoin-induced cleft palate and glucocorticoid receptor levels in mice are influenced by the H-2 histocompatibility complex on chromosome 17. Phenytoin competes with glucocorticoids for the glucocorticoid receptor and inhibits production of prostaglandins and thromboxanes. In this paper we have investigated whether, as in the case of glucocorticoids, phenytoin receptor levels and phenytoin-induced inhibition of prostaglandins are influenced by H-2 in a variety of mouse tissues. Using congenic strains varying only in the H-2 region, but otherwise having either the A/Wy(A) or B10(B) genetic background, we demonstrate here that phenytoin receptor content in the lung and liver is significantly higher in the strains with H-2 a (A/Wy and B 10.A) than in their corresponding H-2 b partners (A.BY and B 10). The H-2 complex also influences phenytoin-induced inhibition of the release of 3H-arachidonic acid and prostaglandin biosynthesis from thymocytes, prelabeled with 3H-arachidonic acid. Thus, these results suggest a similar genetic and biochemical pathway for the teratogenic action of both phenytoin and glucocorticoids.  相似文献   

9.
Evidence suggests that the insulin-like growth factor (IGF) system is involved in follicular growth and development in sheep. However, little information exists as to the role that key peripheral factors play in regulating the expression of IGF components within the follicle. The present study investigated the regulatory effects of FSH and LH on gene expression for IGF ligands and receptors in ovine follicles, using bovine follicular fluid (bFF) and gonadotrophin-releasing hormone antagonist (GnRHa) model systems to perturb endogenous gonadotrophin secretion. Gene expression studies were carried out using in-situ hybridisation with sheep-specific ribonucleotide probes. Treatment of ewes with bFF had no effect on IGF-I mRNA levels. However, IGF-II mRNA levels, particularly in small follicles, and follicular type II IGF-R gene expression significantly increased following bFF administration (P<0.001). Conversely, there was a significant (P<0.001) decrease in type I IGF-R mRNA levels after only 12h of bFF treatment, especially in healthy follicles, although this was transient and was followed by a significant (P<0.01) increase in gene expression levels by 60 h of bFF treatment. Treatment of ewes with GnRHa resulted in a significant increase in mRNA levels encoding IGF-I (P<0.001), IGF-II in early atretic and large follicles (P<0.05), and type II IGF-R in healthy and early atretic follicles (P<0.001). In contrast, GnRHa administration decreased type I IGF-R gene expression levels after 60 h of treatment (P<0.001). These data highlight the roles that endogenous FSH and LH play in regulating IGF ligand and receptor gene expression in the sheep follicle.  相似文献   

10.
11.
Insulin-like growth factors (IGFs) I and II are two single-chain polypeptide hormones that are structurally related to each other and to proinsulin. Among the large number of growth factors involved in ovarian physiology, IGF-I and IGF-II are considered to be important progression factors for ovarian follicular development. To explore the ovarian expression of IGF-I, IGF-II and their receptor genes, a solution hybridization/RNase protection assay, was used. IGF-I mRNA was seen in the granulosa cells, and IGF-II mRNA in the theca-interstitial compartment. To study the hormonal regulation of the IGF-I and IGF-II gene, immature (21-day-old) hypohysectomized rats were treated with FSH (10 μg/day),GH (150 μg/day) and diethylstilbestrol (DES subcutaneous implant/5 days). Estrogen differentially regulated ovarian IGF-I and IGF-II gene expression. In concert with GH, estrogen up-regulated ovarian IGF-I mRNA, but significantly decreased hepatic IGF-I gene expression. Both IGF receptors (type I and type II) as well as the insulin receptor gene, were expressed in both ovarian cells. The expression of the type IIGF receptor gene (but not the type II IGF gene) was up-regulated by FSH and estrogen in vivo. In conclusion, these studies may serve to better understand the auto paracrine role of IGF, and their receptors in the pathophysiology of follicle recruitment, oocyte maturation and potentially embryo development.  相似文献   

12.
To study the molecular mechanisms accounting for strain- and tissue-specific variations in the production of complement proteins, complementary DNA probes were used to assess qualitative and quantitative differences in specific mRNA content of complement proteins C2, factor B, and C3 in extracts of tissues (liver, lung, spleen, kidney, and peritoneal macrophages) isolated from various mouse strains. Northern blot analysis of total hepatic RNA revealed differences in C2, factor B, and C3 mRNA levels in strains that share B10 background but differ in the H-2 region (e.g., H-2k, H-2u, H-2d, H-2f). In each instance, hepatic mRNA specific for the individual gene product corresponded in amount to the serum levels. By contrast, specific mRNA content of C2 and factor B in macrophages differed significantly from those observed in liver for each strain. Modulation of C2, factor B, and C3 expression was studied after in vivo administration of recombinant IL 1 or endotoxin to H-2k (B10.AKM) or H-2u (B10.PL) strain mice. As assessed by Northern blot analysis, neither endotoxin nor IL 1 affected liver C2-specific mRNA but increased specific C2 mRNA levels in kidney and lung. For both strains, IL 1 increased specific factor B mRNA in all tissues examined except for the H-2u strain liver factor B mRNA content, which was not affected by IL 1, whereas that of H-2k mice was increased. The lack of factor B modulation by IL 1 in the H-2u lines was specific to that gene and not a reflection of a generalized IL 1 unresponsiveness. Differences in tissue and strain specific constitutive and IL 1-regulated expression of the C3 gene were also observed in the H-2u and H-2k strains.  相似文献   

13.
Cardiotoxicity by doxorubicin hampers its therapeutic potential as an anticancer drug, but mechanisms leading to cardiotoxicity remain contentious. Through this study, the functional contribution of insulin-like growth factor receptor type II α (IGF-IIRα) which is a novel stress-inducible protein was explored in doxorubicin-induced cardiac stress. Employing both in vitro H9c2 cells and in vivo transgenic rat models (SD-TG [IGF-IIRα]) overexpressing IGF-IIRα specifically in heart, we found that IGF-IIRα leads to cardiac structural abnormalities and functional perturbations that were severely aggravated by doxorubicin-induced cardiac stress. Overexpression of IGF-IIRα leads to cumulative elevation of stress associated cardiac hypertrophy and apoptosis factors. There was a significant reduction of survival associated proteins p-Akt and estrogen receptor β/α, and abnormal elevation of cardiac hypertrophy markers such as atrial natriuretic peptide, cardiac troponin-I, and apoptosis-inducing agents such as p53, Bax, and cytochrome C, respectively. IGF-IIRα also altered the expressions of AT1R, ERK1/2, and p38 proteins. Besides, IGF-IIRα also increased the reactive oxygen species production in H9c2 cells which were markedly aggravated by doxorubicin treatment. Together, we showed that IGF-IIRα is a novel stress-induced protein that perturbed cardiac homeostasis and cumulatively exacerbated the doxorubicin-induced cardiac injury that perturbed heart functions and ensuing cardiomyopathy.  相似文献   

14.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

15.
16.
The insulin-like growth factor-II receptor (IGF-IIR) is frequently mutated or deleted in some malignant human tumors, suggesting that the IGF-IIR is a tumor suppressor. However, the exact mechanism by which IGF-IIR suppresses growth in tumors has not been definitively established. We demonstrate that IGF-IIR-deficient murine L cells (D9) have higher growth rates than IGF-IIR-positive L cells (Cc2) in response to IGF-II. IGF-II levels are higher in growth-conditioned medium from D9 versus Cc2 cells. Receptor neutralization studies and measurements of insulin receptor substrate 1 phosphorylation confirm that the enhanced growth of D9 cells is due to increased stimulation of the IGF-I and insulin receptors by IGF-II. In contrast, the levels of secreted latent and active transforming growth factor beta (TGF-beta) are similar for both D9 and Cc2 cells, indicating that the slower growth of Cc2 cells is not due to activation of latent TGF-beta by IGF-IIR and growth inhibition. The results directly demonstrate that down regulation of the IGF-IIR promotes the growth of transformed D9 cells by sustaining IGF-II, which binds to and activates IGF-IR and insulin receptor to increase intracellular growth signals.  相似文献   

17.
F1 complementation results indicate that a new gene, putatively controlling a minor histocompatibility antigen, is closely linked to the minor histocompatibility gene,H-3, in the fifth linkage group of chromosome 2 of the mouse. This gene controls a product that was capable of inducing as well as acting as a target for cytotoxic lymphocytes (CTL). The lytic activity of CTL developed in B10.LP-H-3b mice specific for the product of the new gene of B10 was restricted to target cells possessing H-2Db antigens. This contrasts to the H-2Kb-restricted activity of H-3.1 specific CTL.  相似文献   

18.
EA, i.e., antigen-antibody complexes are able to induce an antigen-nonspecific suppressive factor(s) from FcR+ B cells by binding on FcR. This factor, termed “suppressive B-cell factor (SBF)” was only effective on H-2 compatible, but not on H-2 incompatible spleen cells in an adoptive cell transfer system. Furthermore, SBF, prepared from B10.A (H-2a) splenic FcR+ B cells, suppressed the adoptive primary response of B10.D2 mice (H-2d), in addition to A/J mice (H-2a) against DNP-DE, by the pretreatment of cells with SBF in vitro. Absorption with affinity columns demonstrated that active components) of SBF from C3H/He mice (H-2k) was eliminated by both B6 anti-CBA (H-2b anti-H-2k) and B10.D2 anti-B10.BR (H-2d anti-H-2k), but not B10 anti-B10.A (H-2b anti-H-2a). In contrast, the suppressive activity of SBF was eliminated neither by anti-mouse Ig nor by a heat-aggregated human γ-globulin column. These results indicate that SBF contains a product coded by the right-hand side of H-2 gene complex, but does not contain Ig determinants nor FcR. Thus, it is conceivable that a compatibility of the right-hand side of H-2 gene complex is required for inducing effective suppression of spleen cells by SBF. SBF was considered to be a trypsin-resistant and heat-labile substance with a molecular weight of 30,000–63,000. The target cells for SBF were FcR? B precursors, but not helper T cells.  相似文献   

19.
Objective: This study explores the synergistic effect of cardiomyoblast apoptosis induced by angiotensin II (Ang II) and Insulin-like growth factor (IGF)-I resistance, and elucidates the role of IGF-II via IGF-II receptor (R) and calcineurin pathways in apoptosis induced by Ang II and IGF-I resistance. Methods: Apoptosis of cultured cardiomyoblast H9c2 cells was assessed by DNA fragmentation on agarose gel electrophoresis, nuclear condensation stained with DAPI, and Western blot analysis of pro-apoptotic Bad and cytochrome c in various combinations of control, Ang II, antisense IGF (I or II), IGF (I or II) antibody, IGF (I or II) receptor (R) antibody, or calcineurin inhibitor (Cyclosporine A, (CsA)). Results: We found the following: (1) The combination of Ang II and IGF-I deficiencies had a synergistic effect on apoptosis, confirmed by DNA fragmentation, nuclei condensation, and increases in such pro-apoptotic proteins as Bad, cytochrome c, caspase 9, and caspase 3 in H9c2 cells. (2) IGF-II and IGF-IIR protein products were increased by antisense IGF-I and IGF-I resistance, but these IGF-II protein products were not affected by sense IGF-I and non-specific antibody IgG in H9c2 cells. (3) The alteration of Bad protein level and the release of cytochrome c, both induced by treatments containing combinations of Ang II and antisense IGF-I, IGF-I antibody or IGF-IR antibody, were inhibited by IGF-II antibody. (4) DNA fragmentation, Bad, and cytochrome c which was induced by treatments combining IGF-IR antibody with Ang II or combining IGF-IR antibody with IGF-II were remarkably attenuated by CsA. Conclusion: IGF-I deficiency and/or IGF-IR resistance induced apoptosis in cardiomyoblast cells. The apoptosis, which might have been caused by the upregulation of IGF-II and IGF-IIR genes possibly activated the downstream calcineurin pathway, was synergistically augmented by Ang II. The last two authors contributed equally.  相似文献   

20.
The interaction of soluble forms of the human cation-independent insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-IIR) with IGFs and mannosylated ligands was analyzed in real time. IGF-IIR proteins containing domains 1-15, 10-13, 11-13, or 11-12 were combined with rat CD4 domains 3 and 4. Following transient expression in 293T cells, secreted protein was immobilized onto biosensor chips. beta-Glucuronidase and latent transforming growth factor-beta1 bound only to domains 1-15. IGF-II bound to all constructs except a control, which contained a point mutation in domain 11. The affinity of domains 1-15, 10-13, 11-13, and 11-12 to IGF-II were 14, 120, 100, and 450 nm, respectively. Our data suggest that domain 13 acts as an enhancer of IGF-II affinity by slowing the rate of dissociation, but additional enhancement by domains other than 10-13 also occurs. As the receptor functions to transport ligands from either the trans-Golgi network or extracellular space to the endosomes, the interaction of IGF-IIR extracellular domains with IGF-II was analyzed over a pH range of 5.0-7.4. The constructs behaved differently in response to pH and in recovery after low pH exposure, suggesting that pH stability of the extracellular domains depends on domains other than 10-13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号