首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

2.
The axonemal organization expressed in the sperm flagella of the cecidomyiid dipteran Asphondylia ruebsaameni is unconventional, being characterized by the presence of an exceedingly high number of microtubular doublets and by the absence of both the inner dynein arms and the central pair/radial spoke complex. Consequently, its motility, both in vivo and in vitro, is also peculiar. Using monoclonal antibodies directed against posttranslational modifications, we have analyzed the presence and distribution of glutamylated and glycylated tubulin isoforms in this aberrant axonemal structure, and compared them with those of a reference insect species (Apis mellifera), endowed with a conventional axoneme. Our results have shown that the unorthodox structure and motility of the Asphondylia axoneme are concomitant with: (1). a very low glutamylation extent in the alpha-tubulin subunit, (2). a high level of glutamylation in the beta-subunit, (3). an extremely low total extent of glycylation, with regard to both monoglycylated and polyglycylated sites, either in alpha- or in beta-tubulin, (4). the presence of a strong labeling of glutamylated tubulin isoforms at the proximal end of the axoneme, and (5). a uniform distribution of glutamylated as well as glycylated isoforms along the rest of the axoneme. Thus, our data indicate that tubulin molecular heterogeneity is much lower in the Asphondylia axoneme than in the conventional 9+2 axoneme with regard to both isoform content and isoform distribution along the axoneme.  相似文献   

3.
Tubulin and microtubules were modified with the protease, subtilisin. The modification reduced the length of α-or β-tubulin by cleaving a peptide fragment from the C-terminals. Generation of α′β′-tubulin, which is cleaved at both the α- and β-subunit terminals, and αβ′-tubulin, which is cleaved at the β′-subunit C-terminal, have already been reported. In this work an isotype, α′β-tubulin, was produced. The three modified tubulin isotypes were compared for their ability to interact with glycolytic enzymes. Cleavage of α led to a poorer interaction when tested via affinity chromatography. Tubulin also inhibits the activity of aldolase and glyceraldehyde 3-phosphate dehydrogenase. When the α-subunit C-terminal was intact, inhibition was greatest. These results imply that the C-terminal of the tubulin α-subunit is subunit is responsible for interactions with glycolytic enzymes.  相似文献   

4.
Tubulin belongs to a highly conserved multigenic family, in which several gene products usually coexist in the same tissue or the same cell. Moreover, seven classes of post-translational modifications of these gene products lead to an amazing diversity of tubulin polypeptide chains, within the same cell type, whose physiological function remains elusive. Such diversity has been found in a very stable microtubular organelle, the sea urchin sperm flagellum, where some tubulin isoforms have been directly implicated in motility, whereas others may play a more structural role. In particular, polyglutamylated tubulin has been shown to be crucial for motility (Gagnon et al., 1996: J Cell Sci 109:1545 p). Here, we show with the GT335 antibody that polyglutamylated tubulin is distributed according to a decreasing gradient along the sea urchin sperm axoneme, since a semi-quantitative measurement of immunofluorescence intensity reveals that in its proximal half, the axoneme is sixfold more labeled than in its distal half. This gradient along the length of the axoneme is confirmed by immunogold labeling procedures which, in addition, demonstrate a uniform distribution of polyglutamylated tubulin among peripheral doublets and a lesser content in the central pair within a same section. Moreover, our data obtained with B3, an antibody that recognizes both mono- and poly-glutamylated tubulin, suggest that the number of glutamate residues in the lateral poly-glutamyl chain of tubulin varies along the whole length of the axoneme. These novel results coupled with those published earlier may be important to understand the role of polyglutamylation in flagellar motility.  相似文献   

5.
Drosophila melanogaster sperm tubulins are posttranslationally glutamylated and glycylated. We show here that axonemes are the substrate for these tubulin C-terminal modifications. Axoneme architecture is required, but full length, motile axonemes are not necessary. Tubulin glutamylation occurs during or shortly after assembly into the axoneme; only glutamylated tubulins are glycylated. Tubulins in other testis microtubules are not modified. Only a small subset of total Drosophila sperm axoneme tubulins have these modifications. Biochemical fractionation of Drosophila sperm showed that central pair and accessory microtubules have the majority of poly-modified tubulins, whereas doublet microtubules have only small amounts of mono- and oligo-modified tubulins. Glutamylation patterns for different beta-tubulins experimentally assembled into axonemes were consistent with utilization of modification sites corresponding to those identified in other organisms, but surrounding sequence context was also important. We compared tubulin modifications in the 9 + 9 + 2 insect sperm tail axonemes of Drosophila with the canonical 9 + 2 axonemes of sperm of the sea urchin Lytichinus pictus and the 9 + 0 motile sperm axonemes of the eel Anguilla japonica. In contrast to Drosophila sperm, L. pictus sperm have equivalent levels of modified tubulins in both doublet and central pair microtubule fractions, whereas the doublets of A. japonica sperm exhibit little glutamylation but extensive glycylation. Tubulin C-terminal modifications are a prevalent feature of motile axonemes, but there is no conserved pattern for placement or amount of these  相似文献   

6.
7.
Glutamylation of alpha and beta tubulin isotypes is a major posttranslational modification giving rise to diversified isoforms occurring mainly in neurotubules, centrioles, and axonemes. Monoglutamylated tubulin isoforms can be differentially recognized by two mAbs, B3 and GT335, which both recognize either polyglutamylated isoforms. In the present study, immunoelectron microscopy and immunofluorescence analyses were performed with these two mAbs to determine the expression and distribution of glutamylated tubulin isoforms in selected biological models whose tubulin isotypes are characterized. In mouse spermatozoa, microtubules of the flagellum contain polyglutamylated isoforms except in the tip where only monoglutamylated isoforms are detected. In spermatids, only a subset of manchette microtubules contain monoglutamylated tubulin isoforms. Cytoplasmic microtubules of Sertoli cells are monoglutamylated. Mitotic and meiotic spindles of germ cells are monoglutamylated whereas the HeLa cell mitotic spindle is polyglutamylated. Three models of axonemes are demonstrated as a function of the degree and extent of tubulin glutamylation. In lung ciliated cells, axonemes are uniformly polyglutamylated. In sea urchin sperm and Chlamydomonas, flagellar microtubules are polyglutamylated in their proximal part and monoglutamylated in their distal part. In Paramecium, cilia are bi- or monoglutamylated only at their base. In all cells, centrioles or basal bodies are polyglutamylated. These new data emphasize the importance of glutamylation in all types of microtubules and strengthen the hypothesis of its role in the regulation of the intracellular traffic and flagellar motility.  相似文献   

8.
In the present report we show the distribution of multiple tubulin isoforms in Trichomonas vaginalis and Tritrichomonas foetus, flagellated parasitic protists of the urogenital tracts of human and cattle, respectively, using immunofluorescence and immunoelectron microscopy. We used several monoclonal and polyclonal anti-tubulin antibodies from different sources and recognizing variant tubulin isoforms. Our results demonstrate that: (1) there is a heterogeneous distribution of the different tubulin isoforms in the main microtubular cell structures, such as axostyle, flagella, basal bodies, and mitotic spindle, (2) the axostyle-pelta junction is a structure with high affinity for glutamylated tubulin antibodies in T. foetus, (3) the spindle labeling is positive to anti-glutamylated tubulin and anti-alpha-tubulin (TAT1 and purchased from Amersham) antibodies in T. vaginalis but it is negative in T. foetus, (4) the nuclear matrix and the cytosol presented positive reaction using glutamylated and TAT1 (anti-alpha-tubulin) antibodies only in T. vaginalis, and (5) the Golgi complex exhibited staining using the glutamylated tubulin antibody. The present data corroborate with the idea of the existence of a heterogeneous population of microtubules in these protists and of a subset of intracytoplasmic microtubules. Microtubule diversity may reflect distinct tubulins, diverse microtubule-associated proteins, or a combination of both.  相似文献   

9.
The structure of the unique bacterial tubulin BtubA/B from Prosthecobacter is very similar to eukaryotic αβ-tubulin but, strikingly, BtubA/B fold without eukaryotic chaperones. Our sequence comparisons indicate that BtubA and BtubB do not really correspond to either α- or β-tubulin but have mosaic sequences with intertwining features from both. Their nucleotide-binding loops are more conserved, and their more divergent sequences correspond to discrete surface zones of tubulin involved in microtubule assembly and binding to eukaryotic cytosolic chaperonin, which is absent from the Prosthecobacter dejongeii draft genome. BtubA/B cooperatively assembles over a wider range of conditions than αβ-tubulin, forming pairs of protofilaments that coalesce into bundles instead of microtubules, and it lacks the ability to differentially interact with divalent cations and bind typical tubulin drugs. Assembled BtubA/B contain close to one bound GTP and GDP. Both BtubA and BtubB subunits hydrolyze GTP, leading to disassembly. The mutant BtubA/B-S144G in the tubulin signature motif GGG(T/S)G(S/T)G has strongly inhibited GTPase, but BtubA-T147G/B does not, suggesting that BtubB is a more active GTPase, like β-tubulin. BtubA/B chimera bearing the β-tubulin loops M, H1-S2, and S9-S10 in BtubB fold, assemble, and have reduced GTPase activity. However, introduction of the α-tubulin loop S9-S10 with its unique eight-residue insertion impaired folding. From the sequence analyses, its primitive assembly features, and the properties of the chimeras, we propose that BtubA/B were acquired shortly after duplication of a spontaneously folding α- and β-tubulin ancestor, possibly by horizontal gene transfer from a primitive eukaryotic cell, followed by divergent evolution.  相似文献   

10.
Preparations of cycled tubulin from Ehrlich ascites tumor cells contain several acessory proteins; once or twice cycled microtubule preparations are usually composed of fibers 10 nm in diameter, but lack vimentin. Highly purified tubulin consists of α- and β-tubulin and a minor component which was identified by peptide mapping as a second β-chain. This pure tubulin is able to form in vitro at low concentrations (1 mg protein/ml) fibers of about 10 nm width, and at higher concentrations (3.5 mg protein/ml) normal microtubules.  相似文献   

11.
文昌鱼精子的超显微结构   总被引:1,自引:0,他引:1  
文昌鱼(Branchiostoma belcheri tsingtaoensis)的成熟精子由一个锥形的顶体,头部,颈(被核包裹)和尾部组成。尾可分为中段,主段和末段。微管对复合体为9+2。 文昌鱼精子的超显微结构与前人报道的线粒体由4—6个组成的不同。它由一个大的线粒体围绕尾主轴中段,而且精子属于对称性类型,可以见到核内管,中心粒和致密纤维,终环结构与隐窝位于尾中段与主段之间。本文并对文昌鱼在系统发生中的重要位置和意义作了讨论。  相似文献   

12.
In the insect sperm flagellum, an extra set of nine additional microtubules, named accessory tubules, is present surrounding the axoneme. Using a sarcosyl/urea extraction, we were able to fractionate the microtubular cytoskeleton of the sperm flagellum of the insect Apis mellifera resulting in the dissociation of the axonemal microtubule protein components and the accessory tubules. This has allowed us to compare the tubulin isoform content of axonemal microtubules and accessory tubules by immunoelectron microscopy and immunoblotting using a panel of monoclonal antibodies directed against different tubulin post-translational modifications (PTMs). All the PTMs occurring in axonemal tubulin are also present in accessory tubules, which indicates the close relativeness of accessory tubules to axonemal rather than to cytoplasmic microtubules. However, our results demonstrate the presence of significant differences in the tubulin isoform content of axonemal microtubules and accessory tubules. First, the tubulin tyrosination extent of accessory tubules is far lower than that of axonemal microtubules, thus confirming at the molecular level their morphogenetic origin as outgrowths from the B-subtubule of each microtubular doublet. Second, although polyglycylation seems to occurr at the same extent in both microtubular systems, alpha-tubulin exhibits a larger amount of monoglycylated sites in axonemal microtubules than in accessory tubules. Third, a greater amount of beta-tubulin molecules is glutamylated in axonemal microtubules than in accessory tubules. Moreover, highly acidic isoforms, likely molecules with longer polyglutamate side chains, are present only in axonemal microtubules. Taken together, our data are indicative of a higher level of tubulin heterogeneity in axonemal microtubules than in accessory tubules. They also show a segregation of post-translationally modified isoforms between accessory tubules and axonemal microtubules and suggest the implication of PTMs in the functional specialization of the two microtubular systems.  相似文献   

13.
A dramatic stimulation of synthesis of flagellar proteins occurs in Chlamydomonas following flagellar removal or experimentally induced resorption of the flagella into the cell. In this report we show that this stimulation involves an increase in the levels of mRNAs for tubulin and many other flagellar proteins. Total RNA and poly(A) RNA were isolated from cells after deflagellation or flagellar resorption, and were then translated in the reticulocyte lysate system. Two-dimensional gel analysis of the translation products demonstrates that the RNA-directed in vitro synthesis of α and β tubulins, and a number of other flagellar proteins, increases after deflagellation or flagellar resorption. Surprisingly, the α-tubulin synthesized in vitro does not co-migrate on two-dimensional gels with mature flagellar α-tubulin. Moreover, in vivo labeling experiments show that the major α-tubulin synthesized in the cell after deflagellation co-migrates with the major α-tubulin made in vitro, not with the major α-tubulin present in the flagella. These results suggest that flagellar α-tubulin is synthesized as a precursor, and undergoes post-translational modification before assembly into the flagella. In addition, we report that the synthesis of tubulin and other flagellar proteins can be specifically inhibited, as well as stimulated. Treatment of cells with IBMX, which induces flagellar resorption, causes a marked decrease in the levels of translatable mRNAs for tubulin and other flagellar proteins, without affecting levels of mRNAs for nonflagellar proteins.  相似文献   

14.
Human Tubulin Binding Cofactor C (TBCC) is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E) and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers.  相似文献   

15.
Koji Ikegami 《FEBS letters》2009,583(12):1957-1963
Tubulin can undergo unusual post-translational modifications, glycylation and glutamylation. We previously failed to find glycylase (glycine ligase) for tubulin while identifying TTLL10 as a polyglycylase for nucleosome assembly protein 1. We here examine whether TTLL10 performs tubulin glycylation. We used a polyclonal antibody (R-polygly) raised against a poly(glycine) chain, which does not recognize monoglycylated protein. R-polygly strongly reacted with mouse tracheal cilia and axonemal tubulins. R-polygly detected many proteins in cell lysates co-expressing TTLL10 with TTLL8. Two-dimensional electrophoresis revealed that the R-polygly-reactive proteins included α- and β-tubulin. R-polygly labeling signals overlapped with microtubules. These results indicate that TTLL10 can strongly glycylate tubulin in a TTLL8-dependent manner. Furthermore, these two TTLL proteins can glycylate unidentified 170-, 110-, 75-, 40-, 35-, and 30-kDa acidic proteins.  相似文献   

16.
Freedman H  Luchko T  Luduena RF  Tuszynski JA 《Proteins》2011,79(10):2968-2982
Tubulin, an α/β heterodimer, has had most of its 3D structure analyzed; however, the carboxy (C)-termini remain elusive. Importantly, the C-termini play critical roles in regulating microtubule structure and function. They are sites of most of the post-translational modifications of tubulin and interaction sites with molecular motors and microtubule-associated proteins. Simulated annealing was used in our molecular dynamics modeling to predict the interactions of the C-terminal tails with the tubulin dimer. We examined differences in their flexibility, interactions with the body of tubulin, and the existence of structural motifs. We found that the α-tubulin tail interacts with the H11 helix of β-tubulin, and the β-tubulin tail interacts with the H11 helix of α-tubulin. Tail domains and H10/B9 loops interact with each other and compete for interactions with positively-charged residues of the H11 helix on the neighboring monomer. In a simulation in which α-tubulin's H10/B9 loop switches on sub-nanosecond intervals between interactions with the C-terminal tail of α-tubulin and the H11 helix of β-tubulin, the intermediate domain of α-tubulin showed more fluctuations compared to those in the other simulations, indicating that tail domains may cause shifts in the position of this domain. This suggests that C-termini may affect the conformation of the tubulin dimer which may explain their essential function in microtubule formation and effects on ligand binding to microtubules. Our modeling also provides evidence for a disordered-helical/helical double-state system of the T3/H3 region of the microtubule, which could be linked to depolymerization following GTP hydrolysis.  相似文献   

17.
18.
Microtubules consisting of tubulin dimers play essential roles in various cellular functions. Investigating the structure–function relationship of tubulin dimers requires a method to prepare sufficient quantities of recombinant tubulin. To this end, we simultaneously expressed human α1- and β3-tubulin using a baculovirus-insect cell expression system that enabled the purification of 5 mg recombinant tubulin per litre of cell culture. The purified recombinant human tubulin could be polymerized into microtubules that glide on a kinesin-coated glass surface. The method provides a powerful tool for in vitro functional analyses of microtubules.  相似文献   

19.
The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and β-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and β-tubulin. The hyperglutamylation of α- and β-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and β-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from β- as well as α-tubulin in vitro and in vivo.  相似文献   

20.
Two monoclonal antibodies (16 D3 and 24 E3) were used to map tubulin domains in human spermatozoa by indirect immunofluorescence. Their specificity to tubulin in these cells was established by Western blotting. Whereas 16 D3 uniformly stained the principal piece of the flagellum, the staining provided by 24 E3 decreased along the tail to become very weak 30 micron further away from the midpiece. This latter antibody also reacted with the proximal centriole as well as the midpiece, but not all spermatozoa stained identically at this level indicating heterogeneity within the population of sperm cells from a given donor. 16 D3 reacted weakly with the head, and the staining was interrupted after a bright spot in the neck. The study of a pathological case (the short tail spermatozoon) with an abnormal arrangement of dense fibers was consistent with a correlation between the distribution of the epitope defined by 24 E3 and that of peri-axenomal structures. The existence of tubulin domains interacting with these structures is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号