首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans.  相似文献   

2.
Dehydration and procurement of water are key problems for vertebrates that have secondarily invaded marine environments. Sea snakes and other marine reptiles are thought to remain in water balance without consuming freshwater, owing to the ability of extrarenal salt glands to excrete excess salts obtained either from prey or from drinking seawater directly. Contrary to this long-standing dogma, we report that three species of sea snake actually dehydrate in marine environments. We investigated dehydration and drinking behaviors in three species of amphibious sea kraits (Laticauda spp.) representing a range of habits from semiterrestrial to very highly marine. Snakes that we dehydrated either in air or in seawater refused to drink seawater but drank freshwater or very dilute brackish water (10%-30% seawater) to remain in water balance. We further show that Laticauda spp. can dehydrate severely in the wild and are far more abundant at sites where there are sources of freshwater. A more global examination of all sea snakes demonstrates that species richness correlates positively with mean annual precipitation within the Indo-West Pacific tropical region. The dependence of Laticauda spp. on freshwater might explain the characteristically patchy distributions of these reptiles and is relevant to understanding patterns of extinctions and possible future responses to changes in precipitation related to global warming. In particular, metapopulation dynamics of the Laticauda group of sea snakes are expected to change in relation to projected reductions of tropical dry-season precipitation.  相似文献   

3.
Many garter snakes, Thamnophis melanogaster, at a desert pond first started foraging for tadpoles when mean water surface temperature was about 20 °C (at 0945–1015 h), and the number of snakes tripled when water temperature reached about 24 °C (at 1100–1130 h). In two years, snakes foraged in April and May, but not in March when water never reached 23 °C and only exceeded 20 °C for a few hours after the usual foraging hours. Snakes in the laboratory dedicated increasing amounts of time to underwater foraging as air and water temperatures increased from 9 °C to 29 °C, and their rate of attacks on fish increased steeply and progressively above an apparent threshold lying between roughly 19 °C and 24 °C, up to at least 29 °C. Temperature may limit T. melanogaster's foraging at the pond to the hours after roughly 0900 h and to the period after roughly March, despite evidence that prey abundance is maximal in March.  相似文献   

4.
We measured substrate temperature preference of juvenile cornsnakes in a linear thermal gradient during a fast and after feeding. After feeding the snakes selected temperatures approximately 6 °C warmer than those chosen by fasting snakes. We measured transit rates, the time from feeding to defecation, in snakes maintained at 22 or 32 °C or during ecdysis. Snakes at 32 °C had a significantly faster transit rate than those at 22 °C and during ecdysis snakes retained feces. The digestive efficiency ranged from 87% to 95% for individual snakes.  相似文献   

5.
Recent investigations of water balance in sea snakes demonstrated that amphibious sea kraits (Laticauda spp.) dehydrate in seawater and require fresh water to restore deficits in body water. Here, we report similar findings for Pelamis platurus, a viviparous, pelagic, entirely marine species of hydrophiine ("true") sea snake. We sampled snakes at Golfo de Papagayo, Guanacaste, Costa Rica and demonstrated they do not drink seawater but fresh water at variable deficits of body water incurred by dehydration. The threshold dehydration at which snakes first drink fresh water is -18.3 ± 1.1 % (mean ± SE) loss of body mass, which is roughly twice the magnitude of mass deficit at which sea kraits drink fresh water. Compared to sea kraits, Pelamis drink relatively larger volumes of water and make up a larger percentage of the dehydration deficit. Some dehydrated Pelamis also were shown to drink brackish water up to 50% seawater, but most drank at lower brackish values and 20% of the snakes tested did not drink at all. Like sea kraits, Pelamis dehydrate when kept in seawater in the laboratory. Moreover, some individuals drank fresh water immediately following capture, providing preliminary evidence that Pelamis dehydrate at sea. Thus, this widely distributed pelagic species remains subject to dehydration in marine environments where it retains a capacity to sense and to drink fresh water. In comparison with sea kraits, however, Pelamis represents a more advanced stage in the evolutionary transition to a fully marine life and appears to be less dependent on fresh water.  相似文献   

6.
Injuries are common in animals of diverse taxa and are usually attributed to encounters with predators. Although often non‐lethal, injuries nevertheless represent effects of predators that can have negative consequences for demography and fitness (e.g. reproductive costs). However, encounters with predators also represent experience through which animals can learn and positively adapt their future behaviour, potentially mitigating, at least partly, the negative effects of prior exposure to predators. I predicted that injured grass snakes (Natrix natrix), which presumably had been handled previously by a predator, would be more likely to move before capture than uninjured snakes. This prediction was borne out. Snakes with injuries also had lower body condition than uninjured snakes, although the effect was non‐significant. Snakes that had been previously captured also were significantly more likely to move before capture than snakes that had never been caught before. These results provide strong evidence for the role of experience and learning in modifying the antipredator behaviour of snakes.  相似文献   

7.
The renal sexual segment (RSS) of immature Northern and Diamondback Water Snakes and Red-Sided Garter Snakes exhibited varying responses to testosterone or 17beta-estradiol. In both male and female water snakes, kidney mass was not a reliable indicator of hormone treatment, whereas tubule diameter, epithelial height and number of sexual granules responded to hormone treatment. In male water snakes, either hormone initiated granule development by day 16; by day 23, only testosterone increased granule density. Female water snakes receiving either hormone exhibited a small number of granules by day 16; by day 23, granules increased only in Diamondback Water Snakes receiving testosterone. Hormones did not initiate RSS hypertrophy in female Red-Sided Garter Snakes. Tubule diameter and epithelial height of testosterone-treated males exhibited significant hypertrophy, while 17beta-estradiol initiated significant increases in tubule diameter. Garter snakes initiated sexual granule development in response to hormone treatment with males exhibiting a greater response than females and testosterone stimulating a greater response than 17beta-estradiol. Sex steroids appear to mimic sexual maturity in immature snakes initiating RSS development. Whereas the RSS of adult males respond to testosterone, our data suggest specific changes in the RSS of females during maturation effectively negates the effect of 17beta-estradiol evident in immature female RSS.  相似文献   

8.
Amphibious predatory ectotherms live and forage in two environments (aquatic and terrestrial) that can drastically differ in temperature means and variance across space and time. The locomotor performance of ectotherms is known to be strongly affected by temperature. However, how differences in water temperature may drive the evolution of alternative foraging tactics in amphibious animals remains poorly understood. Fish‐eating Viperine snakes Natrix maura occur from high altitude cold water streams to warm shallow lakes, and employ two main feeding strategies: sentinel foraging (underwater sit‐and‐wait behaviour) and active foraging (fish chasing). Using 272 juvenile snakes we measured: the performance kinetics of diving and swimming in a wide range of water temperatures; basal metabolic levels in relation to body temperature; and the type of foraging mode expressed in water‐temperature‐acclimated snakes. Individual swimming performances increased with testing temperature (10, 15, 20, 25 or 30 °C). Apnoea time followed an opposite trend however, plausibly reflecting the fact that oxygen demands are related to the metabolic rate of ectotherms. That is, snake heart rates increased with body temperature. Snakes acclimated to 10 °C water mostly displayed sentinel foraging. By contrast, 20 °C and 30 °C water‐acclimated snakes were extremely active fish chasers. Individual apnoea times at the various testing temperatures were all correlated; as were individual swimming speeds. There was however no clear relationship between an individual's ability to hold its breath and its ability to swim, suggesting that both performance traits may be the target of different selective pressures. Fast swimming speed and long breath holding abilities are likely key determinants of both foraging success and predatory evasion, although in a context dependent manner. Active swimming foraging is likely to be advantageous in warm water (> 20 °C), while sentinel foraging appears better suited to cold water (< 14 °C). The physiological aspects of foraging tactics of amphibious snakes combined with field and laboratory observations support the idea that physiological and environmental constraints may generate shifts in habitat use and associated foraging tactics in amphibious ectotherms. Avenues for further research are discussed. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 411–422.  相似文献   

9.
Detecting and locating prey are key to predatory success within trophic chains. Predators use various signals through specialized visual, olfactory, auditory or tactile sensory systems to pinpoint their prey. Snakes chemically sense their prey through a highly developed auxiliary olfactory sense organ, the vomeronasal organ (VNO). In natricine snakes that are able to feed on land and water, the VNO plays a critical role in predatory behavior by detecting cues, known as vomodors, which are produced by their potential prey. However, the chemical nature of these cues remains unclear. Recently, we demonstrated that specific proteins-parvalbumins-present in the cutaneous mucus of the common frog (Rana temporaria) may be natural chemoattractive proteins for these snakes. Here, we show that parvalbumins and parvalbumin-like proteins, which are mainly intracellular, are physiologically present in the epidermal mucous cells and mucus of several frog and fish genera from both fresh and salt water. These proteins are located in many tissues and function as Ca(2+) buffers. In addition, we clarified the intrinsic role of parvalbumins present in the cutaneous mucus of amphibians and fishes. We demonstrate that these Ca(2+)-binding proteins participate in innate bacterial defense mechanisms by means of calcium chelation. We show that these parvalbumins are chemoattractive for three different thamnophiine snakes, suggesting that these chemicals play a key role in their prey-recognition mechanism. Therefore, we suggest that recognition of parvalbumin-like proteins or other calcium-binding proteins by the VNO could be a generalized prey-recognition process in snakes. Detecting innate prey defense mechanism compounds may have driven the evolution of this predator-prey interaction.  相似文献   

10.
Although snakes traditionally have been regarded as asocial animals, recent studies have revealed complex interactions among neonatal snakes and their mothers. We noticed frequent aggregation by captive neonatal Australian elapids (tiger snakes, Notechis scutatus), and conducted simple experiments to clarify the proximate causation of, and potential consequences of, aggregative behaviour. Litters of neonates exhibited statistically significant aggregation (clustering) in empty containers, especially if the test area was subjected to rapid cooling. Aggregation was most pronounced inside shelter‐sites, and familiar shelters (i.e. containing scent cues from the litter) attracted snakes more than did novel (unscented) shelters. Snakes in larger aggregations cooled more slowly (reflecting their higher combined mass and thus, thermal inertia) and higher body temperatures facilitated neonatal locomotor performance, retreat‐site location and anti‐predator tactics. Plausibly, aggregation in neonatal tiger snakes (and other reptiles) functions to retard cooling rates, with the result that the young snakes are better able to evade or repel attacks by predators.  相似文献   

11.
Understanding potential for range expansion is critical when evaluating the risk posed by invasive species. Burmese pythons (Python molurus bivittatus) are established in southern Florida and pose a significant threat to native ecosystems. Recent studies indicate that climate suitable for the species P. molurus exists throughout much of the southern United States. We examined survivorship, thermal biology, and behavior of Burmese pythons from South Florida in a semi-natural enclosure in South Carolina, where winters are appreciably cooler than in Florida, but within the predicted region of suitable climate. All pythons acclimated to the enclosure, but most died after failing to seek appropriate refugia during sub-freezing weather. The remaining snakes used refugia but died during an unusually cold period in January 2010. Although all snakes died during the study, most survived extended periods at temperatures below those typical of southern Florida and none exhibited obvious signs of disease. Our study represents a first step in evaluating the results of climate matching models and we address factors that may affect range expansion in this invasive species.  相似文献   

12.
The resistance to fresh water and seawater in three intertidal oribatid mite species from Bermuda, Alismobates inexpectatus, Fortuynia atlantica and Carinozetes bermudensis, was tested in laboratory experiments. Larvae are more sensitive to fresh and salt water, nymphs and adults showed equal tolerances. Fortuynia atlantica and A. inexpectatus were more resistant to salt water whereas C. bermudensis survived longer in fresh water. Differences in the resistance to fresh and salt water among the three species may be related to their different vertical occurrences in the eulittoral zone but also to the ability of single species to dwell in periodically brackish waters. In all three species half of the specimens survived at least 10 days in fresh water and more than 18 days in salt water. Maximal submersion time in fresh and salt water ranged from 40 to 143 days. Based on median lethal times it could be estimated that each species would be able to survive transport in seawater along the Gulf Stream over a distance of 3,000 km, from Central America to Bermuda. Thus hydrochorous dispersal should be assumed as the most likely mode of dispersal in intertidal fortuyniid and selenoribatid mites.  相似文献   

13.
In terrestrial snakes, many cases of intraspecific shifts in dietary habits as a function of predator sex and body size are driven by gape limitation and hence are most common in species that feed on relatively large prey and exhibit a wide body-size range. Our data on sea snakes reveal an alternative mechanism for intraspecific niche partitioning, based on sex-specific seasonal anorexia induced by reproductive activities. Turtle-headed sea snakes (Emydocephalus annulatus) on coral reefs in the New Caledonian Lagoon feed entirely on the eggs of demersal-spawning fishes. DNA sequence data (cytochrome b gene) on eggs that we palpated from stomachs of 37 snakes showed that despite this ontogenetic stage specialization, the prey comes from a taxonomically diverse array of species including damselfish (41 % of samples, at least 5 species), blennies (41 %, 4 species) and gobies (19 %, 5 species). The composition of snake diets shifted seasonally (with damselfish dominating in winter but not summer), presumably reflecting seasonality of fish reproduction. That seasonal shift affects male and female snakes differently, because reproduction is incompatible with foraging. Adult female sea snakes ceased feeding when they became heavily distended with developing embryos in late summer, and males ceased feeding while they were mate searching in winter. The sex divergence in foraging habits may be amplified by sexual size dimorphism; females grow larger than males, and larger snakes (of both sexes) feed more on damselfish (which often lay their eggs in exposed sites) than on blennies and gobies (whose eggs are hidden within narrow crevices). Specific features of reproductive biology of coral reef fish (seasonality and nest type) have generated intraspecific niche partitioning in these sea snakes, by mechanisms different from those that apply to terrestrial snakes.  相似文献   

14.
Abstract Stephens' Banded Snakes (Hoplocephalus stephensii Krefft 1869) are large (to 1 m), highly arboreal elapid snakes, restricted to mesic forested areas along the eastern coast of Australia. Radiotelemetric monitoring of 16 individuals at Whian Whian State Forest in north‐eastern New South Wales over 25 months provided the first data on spatial ecology of this threatened taxon. Two major influences on movements by Stephens' Banded Snakes were identified: the distribution of large hollow‐bearing trees, and the avoidance of conspecifics. Radiotracked snakes were sedentary inside tree hollows for extended periods (mean = 8 days) during their active season, interrupted by occasional long (mean = 124 m) nocturnal movements to another shelter tree. Snakes travelled on the ground rather than within the canopy, and thus were potentially exposed to terrestrial predators. Although the home ranges of the radiotracked snakes overlapped substantially (mean = 27%), simultaneous occupancy of ‘shared’ shelter trees was less common than expected by chance. Hence, we conclude that adult Stephens' Banded Snakes generally avoid the presence of conspecifics. Snakes used from five to 30 shelter trees and home ranges of male snakes were larger than those of females (mean = 20.2 vs 5.4 ha). The large spatial scale of these movements, and limited overlap among individuals, means that a viable population of this taxon requires a large area of contiguous forest. This requirement may explain why the species has not persisted in small forest fragments.  相似文献   

15.
Increasing temperature due to climate change is one of the greatest challenges for wildlife worldwide. Behavioral data on free-ranging individuals is necessary to determine at what temperatures animals modify activity as this would determine their capacity to continue to move, forage, and mate under altered thermal regimes. In particular, high temperatures could limit available surface activity time and time spent on fitness-related activities. Conversely, performance, such as feeding rate, can increase with temperature potentially having positive fitness effects. Here, we examine how the hunting behaviors of free-ranging Northern Pacific Rattlesnakes (Crotalus oreganus) associate with air temperature and body temperature. We continuously recorded snakes in the field using videography, capturing behaviors rarely considered in past studies such as movements in and out of refuge and strikes on prey. We found that as mean daily air temperature increased, hunting activity and the likelihood of hunting at night decreased, while the number of movements and distance moved per day increased. Snakes typically retreated to refuge before body temperatures reached 31 °C. Body temperatures of snakes hunting on the surface were lower compared to temperatures of non-hunting snakes in refuge in the morning, while this relationship was inverted in the afternoon. Snake body size influenced the disparity of these temperatures. Finally, strike initiation and success occurred across a wide range of body temperatures, indicating hunting performance may not be strongly constrained by temperature. These results on the temperatures at which free-ranging rattlesnakes exhibit fitness-related behaviors could be valuable for understanding their vulnerabilities to future climates.  相似文献   

16.
Snakes are frequently described in both popular and technical literature as either deaf or able to perceive only groundborne vibrations. Physiological studies have shown that snakes are actually most sensitive to airborne vibrations. Snakes are able to detect both airborne and groundborne vibrations using their body surface (termed somatic hearing) as well as from their inner ears. The central auditory pathways for these two modes of "hearing" remain unknown. Recent experimental evidence has shown that snakes can respond behaviorally to both airborne and groundborne vibrations. The ability of snakes to contextualize the sounds and respond with consistent predatory or defensive behaviors suggests that auditory stimuli may play a larger role in the behavioral ecology of snakes than was previously realized. Snakes produce sounds in a variety of ways, and there appear to be multiple acoustic Batesian mimicry complexes among snakes. Analyses of the proclivity for sound production and the acoustics of the sounds produced within a habitat or phylogeny specific context may provide insights into the behavioral ecology of snakes. The relatively low information content in the sounds produced by snakes suggests that these sounds are not suitable for intraspecific communication. Nevertheless, given the diversity of habitats in which snakes are found, and their dual auditory pathways, some form of intraspecific acoustic communication may exist in some species.  相似文献   

17.
Predation is the leading cause of nest failure for most birds. Thus, for ornithologists interested in the causes and consequences of variation in nest success, knowing the identity and understanding the behavior of dominant nest predators is likely to be important. Video documentation of nests has shown that snakes are frequent predators. Here we reviewed 53 North American studies that used nest cameras and used these data to identify broad patterns in snake predation. Snakes accounted for 26% (range: 0–90%) of recorded predation events, with values exceeding 35% in a third of studies. Snakes were more frequent nest predators at lower latitudes and less frequent in forested habitat relative to other nest predators. Although 12 species of snakes have been identified as nest predators, ratsnakes Elaphe obsoleta, corn snakes E. guttata and fox snakes E. vulpina were the most frequent, accounting for > 70% of all recorded nest predation events by snakes and have been documented preying on nests in 30–65% of studies conducted within their geographic ranges. Endotherm‐specialist snakes (Elaphe and Pituophis genera) were more likely to depredate nests in forests and the canopy relative to other snakes, due to their affinity for edge habitat. Predation by only ratsnakes and corn snakes was predominantly nocturnal and only ratsnakes were more likely to prey on nests during the nestling stage. Snakes were not identified to species in over 30% of predation events, underlining the need for more complete reporting of results. A review of research to date suggests the best approach to investigating factors that bring snakes and nests into contact involves combining nesting studies with radio tracking of locally important snake nest predators.  相似文献   

18.
Animals failing to deter predation are eaten. Among the many deterrents to predation, antipredator behaviors are perhaps the most variable, ranging from active (fight or flight) to passive (immobility). We assessed variation in the expression of a passive defensive behavior, death‐feigning, in Plains Hog‐nosed Snakes (Heterodon nasicus) and predicted that intrinsic and extrinsic factors would influence the duration of this behavior and the latency to its onset. We simulated predatory attacks on 27 snakes encountered in the field, and analyzed the behavioral responses of snakes as a function of differences among individuals (sex and size) and environmental factors (temperature and microhabitat). Larger snakes death‐feigned for longer durations than smaller ones; this relationship was stronger for female snakes than for males. Death feints were initiated sooner when snakes were encountered at higher temperatures. Extrinsic factors had a greater influence on latency to death‐feigning behavior, whereas intrinsic factors more strongly influenced its duration. Because our results involved wild snakes, they provide an improved, highly relevant understanding of individual and environmental factors that regulate the expression of immobile defensive behavior. Furthermore, additional hypotheses can now be proposed that address the evolution of defensive behaviors that leave animals prone to attack.  相似文献   

19.
Ontogenetic shifts in habitat use are widespread, especially in ectothermic taxa in which juveniles may be an order of magnitude smaller than large adult conspecifics. The factors that generate such habitat shifts are generally obscure, but we studied an unusual system that allowed us to compare consequences of habitat selection between adults and juveniles. Pit‐vipers (Gloydius shedaoensis) on a small island in north‐eastern China feed almost entirely on seasonally migrating birds. During the spring bird‐migration period, individual snakes consistently re‐used either arboreal or terrestrial ambush sites. Snakes in trees were smaller (and more philopatric) than snakes on the ground. This ontogenetic shift in habitat use may reflect the difficulty of capturing birds on the ground, especially by small snakes. In laboratory trials, large (adult) pit‐vipers struck faster, further and more accurately than did small (juvenile) snakes. In experiments with free‐ranging snakes, the proportion of strikes hitting the bird was lower for juveniles than for adults, and lower for terrestrial snakes than for arboreal snakes. Additionally, adult snakes generally seized the bird by the head whereas juveniles frequently struck the body or wings (and thus, obtained a less secure grip). Arboreal ambush sites may facilitate prey capture not only because they give access to smaller birds but also because they render the bird's location more predictable and, hence, enable the snake to position itself optimally prior to the prey's arrival. Because juvenile pit‐vipers are less capable strikers, and are small relative to available prey items, they may benefit from the greater ease of prey capture from branches. Thus, the ontogenetic shift in habitat selection within this species may be because of ontogenetic shifts in the vipers’ ability to capture and ingest large, mobile prey.  相似文献   

20.
刘军  何华西  钟福生  周剑涛 《蛇志》2006,18(2):92-95
目的研究出一种适合湖南地域理想的科学经济蛇类人工养殖场。方法采用调查研究法、试验法、归纳总结法等研究方法。结果总结出湖南省经济蛇类养殖场主要有蛇房、露天蛇场、室内外结合蛇场等3种模式,首创了“湖南立体蛇场”模式。结论在湖南省境内采用“湖南立体蛇场”模式进行经济蛇类的养殖效果较好,不仅简单易建、经济合算,而且科学合理、实用方便,达到了预期的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号