首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As biodiversity declines, wildlife conservation focuses on in situ and ex situ management strategies. Zoo-based breeding programmes are often designed to contribute to the conservation of species that are threatened in the wild. Diet contributes to the reproductive success, disease status and longevity of all animals. It is near-impossible to replicate a species' diet in captivity using only the species they consume in the wild, but the nutritional composition of a wild diet, if known, can be closely matched using commercially available foods for which the nutritional composition has been calculated. Ecological research has identified food items of importance in the diet of many species. However, the nutritional composition of these food items is rarely evaluated, even though the composition of wild food items is important in understanding the dietary adaptations and requirements of wildlife. In contrast, the nutritional requirements of domestic species are well researched and can be used to predict a range of plausible nutrient requirements of some wild species, especially those with similar life histories. Access to wild populations provides further opportunities for nutritional science to determine the requirements of individual species. Small-scale dietary experimentation undertaken at conservation institutions may show positive effects on health and welfare but is rarely published in the scientific literature. This review describes current standards in nutritional management of birds and recommends pathways for filling knowledge gaps. Research on mammals has dominated the nutrition literature, so there is a relative lack of nutritional management information for birds. We combine concepts of domestic animal nutrition with recent findings on the nutritional requirements of birds to provide a foundation for further studies of avian nutrition. We call for the broader zoological community to share data and collaborate on nutritional research to support conservation institutions in nutritional management of wild birds.  相似文献   

2.
扬子鳄(Alligator sinensis)是我国特有的古老而珍稀的爬行动物,现阶段野生扬子鳄的分布区域进一步萎缩,成为彼此孤立的点状,残存栖息地的生态环境趋于恶化,野生鳄数量估计为120~150条,老年化程度高。扬子鳄的保护管理依据现实状况及时加以调整,加大了野外保护力度,逐步改善野生鳄的栖息生境,实施野外放归工程,初步遏制了野生鳄数量迅速下滑的局面。人工饲养种群数量已逾10 000条,当前人工饲养繁殖的重点是管理好有限的遗传多样性资源。扬子鳄的研究主要涉及形态学、解剖学、组织胚胎学、生态学、生理生化、细胞及分子生物学,人工饲养繁殖技术等方面。营养生理和保护遗传学的应用研究有待加强。  相似文献   

3.
Beavers (Castor spp.) tend not to be a commonly held species and little published material exists relating to their captive care. We review published material and discuss husbandry issues taking into account the requirements of wild beavers. As social mammals with complex chemical communication systems and with such an ability to modify their environments, studies of wild counterparts suggest the captive requirements of beavers may actually be more sophisticated than generally perceived. Common field techniques may have practical application in the captive setting. Their widespread utilisation in conservation, including reintroductions, translocations and habitat management, also requires components of captive care. As welfare science advances there is increasing pressure on captive collections to improve standards and justify the keeping of animals. Conservation science is increasingly challenged to address individual welfare standards. Further research focusing on the captive care of beavers is required. Zoo Biol. 34:101–109, 2015. © 2015 The Authors. Zoo Biology published by Wiley Periodicals, Inc.  相似文献   

4.
Animals often exhibit distinct microbial communities when maintained in captivity as compared to when in the wild. Such differentiation may be significant in headstart and reintroduction programs where individuals spend some time in captivity before release into native habitats. Using 16S rRNA gene sequencing, we (i) assessed differences in gut microbial communities between captive and wild Fijian crested iguanas (Brachylophus vitiensis) and (ii) resampled gut microbiota in captive iguanas released onto a native island to monitor microbiome restructuring in the wild. We used both cloacal swabs and fecal samples to further increase our understanding of gut microbial ecology in this IUCN Critically Endangered species. We found significant differentiation in gut microbial community composition and structure between captive and wild iguanas in both sampling schemes. Approximately two months postrelease, microbial communities in cloacal samples from formerly captive iguanas closely resembled wild counterparts. Interestingly, microbial communities in fecal samples from these individuals remained significantly distinct from wild conspecifics. Our results indicate that captive upbringings can lead to differences in microbial assemblages in headstart iguanas as compared to wild individuals even after host reintroduction into native conditions. This investigation highlights the necessity of continuous monitoring of reintroduced animals in the wild to ensure successful acclimatization and release.  相似文献   

5.
Awareness of the genealogical relationships between founder animals in captive breeding programs is essential for the selection of mating pairs that maintain genetic diversity. If captive founder relationships are unknown they can be inferred using genetic data from wild populations. Here, we report the results of such an analysis for six Cyclura pinguis (Sauria: Iguanidae) acquired as adults in 1999 by the San Diego Zoo Institute for Conservation Research to begin a captive breeding program for this critically endangered species. The six founder animals were reportedly hatched in captivity from eggs collected on Anegada in 1985. No records exist, however, as to where on Anegada the eggs were collected or from how many nests they originated. To assist determination of genealogical relationships, we genotyped the six captive founders, their first six offspring, and 33 wild adult iguanas from Anegada at 23 informative microsatellite loci. With these data, we estimated allele frequencies among the wild samples and then estimated the relatedness of the captive population. Using likelihood inference, we determined that three closely related pairs exist among the six captive founders and that each pair is not closely related to the other two. In addition, we were able to assign parentage for all six of the founders’ offspring tested, one of which had been previously misdiagnosed. Using the assigned parentage and inferred relatedness of the six founders, we calculated mean kinship for each of the six founders and their five living offspring. Finally, based on the allelic diversity of the wild iguanas sampled, we conclude that the C. pinguis population on Anegada is not excessively inbred; however, further investigation is warranted.  相似文献   

6.
Local community participation and ex situ conservation has the potential to assist the recovery of the endangered Egyptian tortoise, Testudo kleinmanni. We initiated an in situ community‐based conservation and research program from a captive population of T. kleinmanni. We used a captive population of the Egyptian tortoise to train a member of the local community as a research technician and used his indigenous tracking skills and knowledge of the area to collect activity and dietary data on 28 captive tortoises. We overcame problems with illiteracy by creating a data sheet based on symbols and numbers. This data sheet allowed us to use the indigenous knowledge of various people from the community, and employ them in the future. Our local community approach to data collection, in conjunction with a craft program, made the conservation of the Egyptian tortoise more rewarding to the local community by providing a more sustainable form of income than collecting animals for the pet trade. Our multidimensional approach (local community participation as research technicians, craft program, and trust building) for gaining local support eventually led to the rediscovery of wild Egyptian tortoises in North Sinai, which was significant, as this species was presumed extinct in Egypt. We have now shifted our focus to in situ conservation, using the research and local capacity building template developed from this captive population study. Our template can be used by zoos and conservation organizations with small budgets and collections of native species in natural habitats to create similar captive research programs that can be applied to in situ conservation. Zoo Biol 26:397–406, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

7.
The Red‐headed Wood Pigeon Columba janthina nitens is endemic to the Ogasawara Islands, an oceanic island chain located 1000 km south of the main islands of Japan. The subspecies is at high risk of extinction because of its small population size and restricted habitat range. We undertook genetic analyses of this pigeon using sequences of a portion of the mitochondrial control region and five microsatellite markers to estimate the genetic characteristics of two wild populations from the Bonin and Volcano Islands, as well as one captive breeding population. The genetic diversity of the wild individuals was exceptionally low in both the mitochondria (nucleotide diversity = 0.00105) and at the microsatellite (3.2 alleles per locus and HE = 0.12) loci. Higher numbers of microsatellite genotypes were observed in the Volcano Islands population than in the Bonin Islands population, which may be because of the relatively low impact of human disturbance. The most common mitochondrial haplotypes and microsatellite alleles observed in the two wild populations were completely fixed in the captive population. Our results suggest that the genetic diversity of the captive population needs to be increased. However, introduction of a wild individual into a captive population can lead to a decreased genetic diversity in the wild population and therefore should be done with caution. The genetic differentiation between the Bonin and the Volcano island groups was low, and the populations of the two island groups should be regarded as a single evolutionarily significant unit. However, special consideration is required for habitat conservation in the Volcano Islands, which may be functioning as a sanctuary for the Red‐headed Wood Pigeon. For the long‐term conservation of threatened bird species that live on remote oceanic islands, determination of management units considering gene flow caused by their flying capacity and maintenance of genetically suitable wild and captive populations are essential.  相似文献   

8.
The Galápagos land iguanas (genus Conolophus) have faced significant anthropogenic disturbances since the 17th century, leading to severe reduction of some populations and the extinction of others. Conservation activities, including the repatriation of captive‐bred animals to depleted areas, have been ongoing since the late 1970s, but genetic information has not been extensively incorporated. Here we use nine species‐specific microsatellite loci of 703 land iguanas from the six islands where the species occur today to characterize the genetic diversity within, and the levels of genetic differentiation among, current populations as well as test previous hypotheses about accidental translocations associated with early conservation efforts. Our analyses indicate that (i) five populations of iguanas represent distinct conservation units (one of them being the recently discovered rosada form) and could warrant species status, (ii) some individuals from North Seymour previously assumed to be from the natural Baltra population appear related to both Isabela and Santa Cruz populations, and (iii) the five different management units exhibit considerably different levels of intrapopulation genetic diversity, with the Plaza Sur and Santa Fe populations particularly low. Although the initial captive breeding programmes, coupled with intensive efforts to eradicate introduced species, saved several land iguana populations from extinction, our molecular results provide objective data for improving continuing in situ species survival plans and population management for this spectacular and emblematic reptile.  相似文献   

9.
The Puerto Rican crested toad (Peltophryne lemur) is currently composed of a single wild population on the south coast of Puerto Rico and two captive populations founded by animals from the northern and southern coasts. The main factors contributing to its decline are habitat loss, inundation of breeding ponds during storms, and impacts of invasive species. Recovery efforts have been extensive, involving captive breeding and reintroductions, habitat restoration, construction of breeding ponds, and public education. To guide future conservation efforts, genetic variation and differentiation were assessed for the two captive colonies and the remaining wild population using the mitochondrial control region and six novel microsatellite loci. Only two moderately divergent mitochondrial haplotypes were found, with one fixed in each of the southern and northern lineages. Moderate genetic variation exists for microsatellite loci in all three groups. The captive southern population has not diverged substantially from the wild population at microsatellite loci (F ST = 0.03), whereas there is little allelic overlap between the northern and southern lineages at five of six loci (F ST > 0.3). Despite this differentiation, they are no more divergent than many populations of other amphibian species. As the northern breeding colony may not remain viable due to its small size and inbred nature, it is recommended that a third breeding colony be established in which northern and southern individuals are combined. This will preserve any northern adaptive traits that may exist, and provide animals for release in the event that the pure northern lineage becomes extirpated.  相似文献   

10.
The Amargosa vole (Microtus californicus scirpensis) is a highlyendangered rodent endemic to a small stretch of the California portion of the Amargosa River basin in Inyo County's Mojave Desert. Although the Amargosa vole has survived in this naturally fragmented ecosystem for thousands of years, recent habitat degradation due to land development, water drainage, and marsh exploitation has further isolated the species and reduced its available habitat. As part of a conservation effort to preserve the species, a captive breeding population was established in 2014 to serve as an insurance colony and as a source of individuals to release into the wild as restored habitat becomes available. As this is the only captive colony for this species, there is little published information about appropriate care and husbandry for the Amargosa vole. Here we provide information about behavior, diet, reproduction, drug sensitivities, and diseases that affect successful captive care. We also provide recommendations for housing and disease management to preserve natural behaviors and defenses in captive‐born animals.  相似文献   

11.
Headstarting animals in captivity prior to reintroduction into the wild has proven to be a valuable strategy in the conservation of critically endangered Caribbean rock iguanas (genus Cyclura). However, a major concern associated with headstarting programs is that some animals reared in a captive environment may lack the behavioral competency to survive and reproduce following release into the wild. Rock iguana headstarting programs are reviewed in terms of assessment and potential enhancement of behavioral competency both pre- and post-release. It may be possible to induce more highly developed antipredator behavior through carefully designed training programs, well-planned enclosures, and site-specific release strategies. Post-release foraging competency can likely be augmented by exposing release candidates to a wider range of natural food types prior to release and timing releases to coincide with periods of seasonal food abundance. The probability of successful settlement and social integration into the wild population may be increased through pre-release exposure to key biotic and abiotic environmental cues, spatial and temporal release strategies, and selection of appropriate release candidates. While empirical results to date suggest that Caribbean rock iguanas are prime candidates for headstart-release programs, avenues for future research are explored that could help enhance restoration success.  相似文献   

12.
Captive breeding of animals is often cited as an important tool in conservation, especially for fishes, but there are few reports of long-term (<50 years) success of captive breeding programs, even in salmonid fishes. Here we describe the captive breeding program for Eagle Lake rainbow trout, Oncorhynchus mykiss aquilarum, which is endemic to the Eagle Lake watershed of northeastern California. The population in Eagle Lake has been dependent on captive breeding for more than 60 years and supports a trophy fishery in the lake. Nevertheless, the basic life history, ecological, and genetic traits of the subspecies still seem to be mostly intact. Although management has apparently minimized negative effects of hatchery rearing, reestablishing a wild population would ensure maintenance of its distinctive life history and its value for future use as a hatchery fish. An important factor that makes reestablishment possible is that the habitat in Eagle Lake is still intact and that Pine Creek, its major spawning stream, is recovering as habitat. With the exception of an abundant alien brook trout (Salvelinus fontinalis) population in Pine Creek, the habitat factors that led to the presumed near-extinction of Eagle Lake rainbow trout in the early twentieth century have been ameliorated, although the final stages of reestablishment (eradication of brook trout, unequivocal demonstration of successful spawning migration) have still not been completed. The Eagle Lake rainbow trout story shows that long-term captive breeding of migratory salmonid fishes does not necessarily prevent reestablishment of wild populations, provided effort is made to counter the effects of hatchery selection and that natural habitats are restored for reintroduction. Long-term success, however, ultimately depends upon eliminating hatchery influences on wild-spawning populations. Extinction of Eagle Lake rainbow trout as a wild species becomes increasingly likely if we fail to act boldly to protect it and the Eagle Lake watershed.  相似文献   

13.
The conservation of tortoises poses a unique situation because several threatened species are commonly kept as pets within their native ranges. Thus, there is potential for captive populations to be a reservoir for repatriation efforts. We assess the utility of captive populations of the threatened Agassiz’s desert tortoise (Gopherus agassizii) for recovery efforts based on genetic affinity to local areas. We collected samples from 130 captive desert tortoises from three desert communities: two in California (Ridgecrest and Joshua Tree) and the Desert Tortoise Conservation Center (Las Vegas) in Nevada. We tested all samples for 25 short tandem repeats and sequenced 1,109 bp of the mitochondrial genome. We compared captive genotypes to a database of 1,258 Gopherus samples, including 657 wild caught G. agassizii spanning the full range of the species. We conducted population assignment tests to determine the genetic origins of the captive individuals. For our total sample set, only 44 % of captive individuals were assigned to local populations based on genetic units derived from the reference database. One individual from Joshua Tree, California, was identified as being a Morafka’s desert tortoise, G. morafkai, a cryptic species which is not native to the Mojave Desert. Our data suggest that captive desert tortoises kept within the native range of G. agassizii cannot be presumed to have a genealogical affiliation to wild tortoises in their geographic proximity. Precautions should be taken before considering the release of captive tortoises into the wild as a management tool for recovery.  相似文献   

14.
Abstract: We genotyped 180 captive desert tortoises (Gopherus agassizii) from Kingman (n = 45), Phoenix (n = 113), and Tucson (n = 22), Arizona, USA, to determine if the genetic lineage of captives is associated with that of wild tortoises in the local area (Sonoran Desert). We tested all samples for 16 short tandem repeats and sequenced 1,109 base pairs of mitochondrial DNA (mtDNA). To determine genetic origin, we performed assignment tests against a reference database of 997 desert tortoise samples collected throughout the Mojave and Sonoran Deserts. We found that >40% of our Arizona captive samples were genetically of Mojave Desert or hybrid origin, with the percentage of individuals exhibiting the Mojave genotype increasing as the sample locations approached the California, USA, border. In Phoenix, 11.5% were Sonoran–Mojave crosses, and 8.8% were hybrids between desert tortoise and Texas tortoise (G. berlandieri). Our findings present many potential implications for wild tortoises in the Sonoran Desert of Arizona. Escaped or released captive tortoises with Mojave or hybrid genotypes have the potential to affect the genetic composition of Sonoran wild populations. Genotyping captive desert tortoises could be used to inform the adoption process, and thereby provide additional protection to native desert-tortoise populations in Arizona.  相似文献   

15.
The Leon Springs pupfish (Cyprinodon bovinus) is an endangered species currently restricted to a single desert spring and a separate captive habitat in southwestern North America. Following establishment of the captive population from wild stock in 1976, the wild population has undergone natural population size fluctuations, intentional culling to purge genetic contamination from an invasive congener (Cyprinodon variegatus) and augmentation/replacement of wild fish from the captive stock. A severe population decline following the most recent introduction of captive fish prompted us to examine whether the captive and wild populations have differentiated during the short time they have been isolated from one another. If so, the development of divergent genetic and/or morphologic traits between populations could contribute to a diminished ability of fish from one location to thrive in the other. Examination of genomewide single nucleotide polymorphisms and morphologic variation revealed no evidence of residual C. variegatus characteristics in contemporary C. bovinus samples. However, significant genetic and morphologic differentiation was detected between the wild and captive populations, some of which might reflect local adaptation. Our results indicate that genetic and physical characteristics can diverge rapidly between isolated subdivisions of managed populations, potentially compromising the value of captive stock for future supplementation efforts. In the case of C. bovinus, our findings underscore the need to periodically inoculate the captive population with wild genetic material to help mitigate genetic, and potentially morphologic, divergence between them and also highlight the utility of parallel morphologic and genomic evaluation to inform conservation management planning.  相似文献   

16.
The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galápagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the biogeography of the host.  相似文献   

17.
The Socorro isopod, Thermosphaeroma thermophilum, became the focus of a novel conservation strategy when apparent extirpation of the species from the wild prompted construction of the Socorro Isopod Propagation Facility (SIPF) near the native spring in Socorro, New Mexico, USA. We subjected captive populations to 4 habitat treatments over 2 consecutive 50-month experimental trials. Native populations of T. thermophilum remained significantly more abundant than captive subpopulations during the 100-month study. Population trends among artificial habitats differed slightly between the trials, but the magnitude of this difference was independent of linear flow within either pool series, suggesting that captive isopods responded to habitat quality. Isopod age structure was most heterogeneous in pools with plants suggesting that vertical structural diversity is necessary to maintain long-term viability of T. thermophilum in captivity. Observations of `breeding huddles' in the SIPF pools implied that controlled propagation may affect the social basis of the species' mating system. This could be a behavioral response to selection on body size that may reduce predation risks from larger male cannibals, or to increase fitness of both sexes under spatially altered sex ratios of artificial environments. Our results accentuate the need for continued research on species-specific management practices for geographically restricted invertebrate taxa such as the endangered Socorro isopod.  相似文献   

18.
The assessment report of the 4th International Panel on Climate Change confirms that global warming is strongly affecting biological systems and that 20–30% of species risk extinction from projected future increases in temperature. It is essential that any measures taken to conserve individual species and their constituent populations against climate-mediated declines are appropriate. The release of captive bred animals to augment wild populations is a widespread management strategy for many species but has proven controversial. Using a regression model based on a 37-year study of wild and sea ranched Atlantic salmon (Salmo salar) spawning together in the wild, we show that the escape of captive bred animals into the wild can substantially depress recruitment and more specifically disrupt the capacity of natural populations to adapt to higher winter water temperatures associated with climate variability. We speculate the mechanisms underlying this seasonal response and suggest that an explanation based on bio-energetic processes with physiological responses synchronized by photoperiod is plausible. Furthermore, we predict, by running the model forward using projected future climate scenarios, that these cultured fish substantially increase the risk of extinction for the studied population within 20 generations. In contrast, we show that positive outcomes to climate change are possible if captive bred animals are prevented from breeding in the wild. Rather than imposing an additional genetic load on wild populations by releasing maladapted captive bred animals, we propose that conservation efforts should focus on optimizing conditions for adaptation to occur by reducing exploitation and protecting critical habitats. Our findings are likely to hold true for most poikilothermic species where captive breeding programmes are used in population management.  相似文献   

19.
The rise in infections by antibiotic-resistant bacteria poses a serious public health problem worldwide. The gut microbiome of animals is a reservoir for antibiotic resistance genes (ARGs). However, the correlation between the gut microbiome of wild animals and ARGs remains controversial. Here, based on the metagenomes of giant pandas (including three wild populations from the Qinling, Qionglai and Xiaoxiangling Mountains, and two major captive populations from Yaan and Chengdu), we investigated the potential correlation between the constitution of the gut microbiome and the composition of ARGs across the different geographic locations and living environments. We found that the types of ARGs were correlated with gut microbiome composition. The NMDS cluster analysis using Jaccard distance of the ARGs composition of the gut microbiome of wild giant pandas displayed a difference based on geographic location. Captivity also had an effect on the differences in ARGs composition. Furthermore, we found that the Qinling population exhibited profound dissimilarities of both gut microbiome composition and ARGs (the highest proportion of Clostridium and vancomycin resistance genes) when compared to the other wild and captive populations studies, which was supported by previous giant panda whole-genome sequencing analysis. In this study, we provide an example of a potential consensus pattern regarding host population genetics, symbiotic gut microbiome and ARGs. We revealed that habitat isolation impacts the ARG structure in the gut microbiome of mammals. Therefore, the difference in ARG composition between giant panda populations will provide some basic information for their conservation and management, especially for captive populations.  相似文献   

20.
Genetic tools have become a critical complement to traditional approaches for meeting short‐ and long‐term goals of ex situ conservation programs. The San Diego Zoo (SDZ) harbors a collection of wild‐born and captive‐born Galápagos giant tortoises (n = 22) of uncertain species designation and unknown genealogical relationships. Here, we used mitochondrial DNA haplotypic data and nuclear microsatellite genotypic data to identify the evolutionary lineage of wild‐born and captive‐born tortoises of unknown ancestry, to infer levels of relatedness among founders and captive‐born tortoises, and assess putative pedigree relationships assigned by the SDZ studbook. Assignment tests revealed that 12 wild‐born and five captive‐born tortoises represent five different species from Isabela Island and one species from Santa Cruz Island, only five of which were consistent with current studbook designations. Three wild‐born and one captive‐born tortoise were of mixed ancestry. In addition, kinship analyses revealed two significant first‐order relationship pairs between wild‐born and captive‐born tortoises, four second‐order relationships (half‐sibling) between wild‐born and captive tortoises (full‐sibs or parent‐offspring), and one second‐order relationship between two captive‐born tortoises. Of particular note, we also reconstructed a first‐order relationship between two wild‐born individuals, violating the founder assumption. Overall, our results contribute to a worldwide effort in identifying genetically important Galápagos tortoises currently in captivity while revealing closely related founders, reconstructing genealogical relationships, and providing detailed management recommendations for the SDZ tortoises. Zoo Biol 31:107;–120, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号