首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 170 picosecond molecular dynamics trajectory has been calculated starting from a model-built structure of chloroplast CTF. Local conformational changes occur during the equilibration period. Thereafter, a dynamically stable structure is attained. The conformational changes involve a turn connecting two structural subdomains which has an amino acid insertion and several substitutions with respect to the E. coli sequence. Potential energy minimisation alone fails to detect such a change. The overall folding and atomic positional fluctuations are very similar to those found in MD simulations of the E. coli molecule. The combined use of computer graphics based model building and MD calculations has lead to a thermally stable putative structure for the chloroplast CTF.  相似文献   

2.
Plants and bacteria assimilate and incorporate inorganic sulfur into organic compounds such as the amino acid cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase (CS) complex. The CS complex is composed of the enzymes serine acetyl transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL). Although it is experimentally known that formation of the CS complex influences cysteine production, the exact biological function of the CS complex, the mechanism of reciprocal regulation of the constituent enzymes and the structure of the complex are still poorly understood. Here, we used docking techniques to construct a model of the CS complex from mitochondrial Arabidopsis thaliana. The three-dimensional structures of the enzymes were modeled by comparative techniques. The C-termini of SAT, missing in the template structures but crucial for CS formation, were modeled de novo. Diffusional encounter complexes of SAT and OAS-TL were generated by rigid-body Brownian dynamics simulation. By incorporating experimental constraints during Brownian dynamics simulation, we identified complexes consistent with experiments. Selected encounter complexes were refined by molecular dynamics simulation to generate structures of bound complexes. We found that although a stoichiometric ratio of six OAS-TL dimers to one SAT hexamer in the CS complex is geometrically possible, binding energy calculations suggest that, consistent with experiments, a ratio of only two OAS-TL dimers to one SAT hexamer is more likely. Computational mutagenesis of residues in OAS-TL that are experimentally significant for CS formation hindered the association of the enzymes due to a less-favorable electrostatic binding free energy. Since the enzymes from A. thaliana were expressed in Escherichia coli, the cross-species binding of SAT and OAS-TL from E. coli and A. thaliana was explored. The results showed that reduced cysteine production might be due to a cross-binding of A. thaliana OAS-TL with E. coli SAT. The proposed models of the enzymes and their complexes provide mechanistic insights into CS complexation.  相似文献   

3.
The plasmepsin proteases from the malaria parasite Plasmodium falciparum are attracting attention as putative drug targets. A recently published crystal structure of Plasmodium malariae plasmepsin IV bound to an allophenylnorstatine inhibitor [Clemente, J.C. et al. (2006) Acta Crystallogr. D 62, 246-252] provides the first structural insights regarding interactions of this family of inhibitors with plasmepsins. The compounds in this class are potent inhibitors of HIV-1 protease, but also show nM binding affinities towards plasmepsin IV. Here, we utilize automated docking, molecular dynamics and binding free energy calculations with the linear interaction energy LIE method to investigate the binding of allophenylnorstatine inhibitors to plasmepsin IV from two different species. The calculations yield excellent agreement with experimental binding data and provide new information regarding protonation states of active site residues as well as conformational properties of the inhibitor complexes.  相似文献   

4.
The formation of triple-stranded nucleic acid helices is studied by molecular mechanics and molecular dynamics calculations. Using standard TAT and CGG homopolymers, single, triple, and quintuple molecular replacements are made. Some of these replacements are expected to form Hoogsteen bonds and some are not. While the electrostatic and total energetic differences for base triplet mismatches were dependent on the electrostatic model chosen, clear trends in the local geometric distortions were apparent. Relationships between these model-built strand geometries and chemical probe experiments are discussed.  相似文献   

5.
Resorcylic acid lactones containing a cis-enone-such as hypothemycin-are susceptible to Michael addition reactions and are potent and specific inhibitors of about 45 of the known Ser/Thr/Tyr protein kinases. These inhibitors bind reversibly, and then form a covalent adduct with a completely conserved cysteine in the ATP binding site of their target kinases. As a paradigm for the structures of the cis-enone resorcylic acid lactone complexes with this subset of kinases, we have modeled the structure of ERK2-hypothemycin reversible and covalent complexes using docking and extended molecular dynamics simulations. Subsequently, we determined the 2.5A resolution crystal structure of the complex that was in excellent accord with the modeled structure. The results were used to discuss structure-activity relationships, and provide a structural template for the development of irreversible inhibitors that complement the ATP binding site of kinases.  相似文献   

6.
Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.  相似文献   

7.
We exploit a model that considers three compartments: blood plasma (BP), lymphoid tissue-interstitial spaces (LT-IS), and follicular dendritic cells (FDC), for the HIV-1 dynamics under the application of highly active antiretroviral therapy (HAART) which allowed us to unravel distinct viral dynamics occurring in short- (2 days), middle- (21 days), and long-term (183 days) time scales. The different time scales are determined by the viral clearance rate, the ratio of productively infected CD4+ T cells to chronically infected cells, and the dissociation rate of HIV-1 complexes from FDC. This generates a scenario in which, after an initial transient stage, the viral BP dynamics decouples and becomes governed by the lymphoid tissue (LT) dynamics; in a later stage, a new decoupling occurs in which the LT-IS dynamics is slaved to that of the FDC dynamics. We observed an initial increase in the viremia after HAART in a patient who did not receive protease inhibitors (PI). By means of the above-mentioned model we were able to highlight the relevant parameters which need to be estimated at three different time scales after HAART.  相似文献   

8.
This paper develops and evaluates large-scale calculation of 3D structures of protein complexes by homology modeling as a promising new approach for protein docking. The complexes investigated were papain-like cysteine proteases and their protein inhibitors, which play numerous roles in human and parasitic metabolisms. The structural modeling was performed in two parts. For the first part (evaluation set), nine crystal structure complexes were selected, 1325 homology models of known complexes were rebuilt by various templates including hybrids, allowing an analysis of the factors influencing the accuracy of the models. The important considerations for modeling the interface were protease coverage and inhibitor sequence identity. In the second part (study set), the findings of the evaluation set were used to select appropriate templates to model novel cysteine protease-inhibitor complexes from human and malaria parasites Plasmodium falciparum and Plasmodium vivax. The energy scores, considering the evaluation set, indicate that the models are of high accuracy.  相似文献   

9.
Platinum(II) complexes have been demonstrated to form covalent bonds with sulfur-donating ligands (in glutathione, metallothionein and other sulfur-containing biomolecules) or coordination bonds with nitrogen-donating ligands (such as histidine and guanine). To investigate how these compounds interact with cysteine proteases, we chose terpyridine platinum(II) (TP-Pt(II)) complexes as a model system. By using X-ray crystallography, we demonstrated that TP-Pt(II) formed a covalent bond with the catalytic cysteine residue in pyroglutamyl peptidase I. Moreover, by using MALDI (matrix-assisted laser desorption/ionization) and TOF-TOF (time of flight) mass spectrometry, we elucidated that the TP-Pt(II) complex formed a covalent bond with the active-site cysteine residue in two other types of cysteine protease. Taken together, the results unequivocally showed that TP-Pt(II) complexes can selectively bind to the active site of most cysteine proteases. Our findings here can be useful in the design of new anti-cancer, anti-parasite or anti-virus platinum(II) compounds.  相似文献   

10.
The fold of small disulfide-rich proteins largely relies on two or more disulfide bridges that are main components of the hydrophobic core. Because of the small size of these proteins and their high cystine content, the cysteine connectivity has been difficult to ascertain in some cases, leading to uncertainties and debates in the literature. Here, we use molecular dynamics simulations and MM-PBSA free energy calculations to compare similar folds with different disulfide pairings in two disulfide-rich miniprotein families, namely the knottins and the short-chain scorpion toxins, for which the connectivity has been discussed. We first show that the MM-PBSA approach is able to discriminate the correct knotted topology of knottins from the laddered one. Interestingly, a comparison of the free energy components for kalata B1 and MCoTI-II suggests that cyclotides and squash inhibitors, although sharing the same scaffold, are stabilized through different interactions. Application to short-chain scorpion toxins suggests that the conventional cysteine pairing found in many homologous toxins is significantly more stable than the unconventional pairing reported for maurotoxin and for spinoxin. This would mean that native maurotoxin and spinoxin are not at the lowest free energy minimum and might result from kinetically rather than thermodynamically driven oxidative folding processes. For both knottins and toxins, the correct or conventional disulfide connectivities provide lower flexibilities and smaller deviations from the initial conformations. Overall, our work suggests that molecular dynamics simulations and the MM-PBSA approach to estimate free energies are useful tools to analyze and compare disulfide bridge connectivities in miniproteins.  相似文献   

11.
We present a novel multi‐level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi‐scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low‐dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra‐cellular fibrinogen‐binding domain (Efb‐C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Abstract

Platinum(II) complexes have been demonstrated to form covalent bonds with sulfur-donating ligands (in glutathione, metallothionein and other sulfur-containing biomolecules) or coordination bonds with nitrogen-donating ligands (such as histidine and guanine). To investigate how these compounds interact with cysteine proteases, we chose terpyridine platinum(II) (TP-Pt(II)) complexes as a model system. By using X-ray crystallography, we demonstrated that TP-Pt(II) formed a covalent bond with the catalytic cysteine residue in pyroglutamyl peptidase I. Moreover, by using MALDI (matrix-assisted laser desorption/ionization) and TOF-TOF (time of flight) mass spectrometry, we elucidated that the TP-Pt(II) complex formed a covalent bond with the active-site cysteine residue in two other types of cysteine protease. Taken together, the results unequivocally showed that TP-Pt(II) complexes can selectively bind to the active site of most cysteine proteases. Our findings here can be useful in the design of new anti-cancer, anti-parasite or anti-virus platinum(II) compounds.  相似文献   

13.
Molecular dynamics (MD) simulations on the complexes of glucoamylase II (471) from Aspergillus awamori var. X100 with two powerful inhibitors, 1-deoxynojirimycin and (+)-lentiginosine, have been performed, in order to build a model for these complexes in solution and to clarify the structure-activity relationship. MD calculations were carried out for 105 ps, over a 15 Å sphere centered on the inhibitors. A 8 Å residue-based cut-off was used, and the calculations were performed with explicit inclusion of solvent molecules. The MD structure of the complex 1-deoxynojirimycin-glucoamylase shows only minor deviations from the available X-ray structure. The MD structure of the complex of (+)-lentiginosine-glucoamylase, obtained by docking the inhibitor into the active site, suggests us a suitable orientation for the molecule into the enzyme cavity, which can rationalize the high inhibition activity found for (+)-lentiginosine towards amyloglucosidase from A. niger.  相似文献   

14.
We have examined the potential of displaying a protease species in vitro using ribosome display and demonstrate specific capture on the basis of its catalytic activity. Using a model bacterial cysteine protease, sortase A (SrtA), we show that this enzyme can be functionally expressed in vitro. By overlap PCR we constructed ribosome display templates with the SrtA open reading frame fused to a C terminal glycine-serine rich flexible linker and a tether derived from eGFP. Using the broad range cysteine protease irreversible inhibitor E-64 linked to acrylic beads, we show that we can isolate SrtA ribosome display ternary complexes, and recover their encoding mRNA by RT-PCR. This recovery was lost when applied to a SrtA catalytically inactive mutant, or could be alleviated by competition with free inhibitor. This sensitive technique could be further developed to allow the screening of proteases against putative inhibitors and/or the identification of novel proteolytic species.  相似文献   

15.
The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis.  相似文献   

16.
The winged helix-turn-helix model for the repair of O6-MeG to guanine involving the reaction of O6-MeG with a tyrosine residue of the protein O6-alkylguanine-DNA alkyltransferase (AGT) was examined by studying the reaction mechanism and barrier energies. Molecular geometries of the species and complexes involved in the reaction, i.e. the reactant, intermediate and product complexes as well as transition states, were optimized employing density functional theory in gas phase. It was followed by single point energy calculations using density functional theory along with a higher basis set and second order Mφller-Plesset perturbation theory (MP2) along with two different basis sets in gas phase and aqueous media. For the solvation calculations in aqueous media, the integral equation formalism of the polarizable continuum model (IEF-PCM) was employed. Vibrational frequency analysis was performed for each optimized structure and genuineness of transition states was ensured by visualizing the vibrational modes. It is found that tyrosine can repair O6-MeG to guanine by a two-step reaction. The present results have been compared with those obtained considering the helix-turn-helix model where the repair reaction primarily involves cysteine and occurs in a single-step. It is concluded that the repair through tyrosine envisaged in the winged helix-turn-helix model would be less efficient than that through cysteine envisaged in the helix-turn-helix model.  相似文献   

17.
Human herpesvirus 8 (HHV8) downregulates major histocompatibility complex (MHC) class I complexes from the plasma membrane via two of its genes, K3 and K5. The N termini of K3 and K5 contain a plant homeodomain (PHD) predicted to be structurally similar to RING domains found in E3 ubiquitin ligases. In view of the importance of the ubiquitin-proteasome system in sorting within the endocytic pathway, we analyzed its role in downregulation of MHC class I complexes in cells expressing K3. Proteasome inhibitors as well as cysteine and aspartyl protease inhibitors stabilize MHC class I complexes in cells expressing K3. However, proteasome inhibitors differentially affect sorting of MHC class I complexes within the endocytic pathway and prevent their delivery to a dense endosomal compartment. In this compartment, the cytoplasmic tail of MHC class I complexes is cleaved by cysteine proteases. The complex is then cleaved within the plane of the membrane by an aspartyl protease, resulting in a soluble MHC class I fragment composed of the lumenal domain of the heavy chain, beta(2)-microglobulin (beta(2)m), and peptide. We conclude that K3 not only directs internalization, but also targets MHC class I complexes to a dense endocytic compartment on the way to lysosomes in a ubiquitin-proteasome-dependent manner.  相似文献   

18.
The conduction properties of the voltage-gated potassium channel Kv1.3 and its modes of interaction with several polypeptide venoms are examined using Brownian dynamics simulations and molecular dynamics calculations. Employing an open-state homology model of Kv1.3, we first determine current-voltage and current-concentration curves and ascertain that simulated results accord with experimental measurements. We then investigate, using a molecular docking method and molecular dynamics simulations, the complexes formed between the Kv1.3 channel and several Kv-specific polypeptide toxins that are known to interfere with the conducting mechanisms of several classes of voltage-gated K+ channels. The depths of potential of mean force encountered by charybdotoxin, α-KTx3.7 (also known as OSK1) and ShK are, respectively, −19, −27, and −25 kT. The dissociation constants calculated from the profiles of potential of mean force correspond closely to the experimentally determined values. We pinpoint the residues in the toxins and the channel that are critical for the formation of the stable venom-channel complexes.  相似文献   

19.
Papain from Carica papaya, an easily available cysteine protease, is the best-studied representative of this family of enzymes. The three dimensional structure of papain is very similar to that of other cysteine proteases of either plant (actinidin, caricain, papaya protease IV) or animal (cathepsins B, K, L, H) origin. As abnormalities in the activities of mammalian cysteine proteases accompany a variety of diseases, there has been a long-lasting interest in the development of potent and selective inhibitors for these enzymes. A covalent inhibitor of cysteine proteases, designed as a combination of epoxysuccinyl and peptide moieties, has been modeled in the catalytic pocket of papain. A number of its configurations have been generated and relaxed by constrained simulated annealing-molecular dynamics in water. A clear conformational variability of this inhibitor is discussed in the context of a conspicuous conformational diversity observed earlier in several solid-state structures of other complexes between cysteine proteases and covalent inhibitors. The catalytic pockets S2 and even more so S3, as defined by the pioneering studies on the papain-ZPACK, papain-E64c and papain-leupeptin complexes, appear elusive in view of the evident flexibility of the present inhibitor and in confrontation with the obvious conformational scatter seen in other examples. This predicts limited chances for the development of selective structure-based inhibitors of thiol proteases, designed to exploit the minute differences in the catalytic pockets of various members of this family. A simultaneous comparison of the three published proenzyme structures suggests the enzyme's prosegment binding loop-prosegment interface as a new potential target for selective inhibitors of papain-related thiol proteases.  相似文献   

20.
In this study we use ab initio molecular dynamics simulations to analyze the structure and dynamics of the oxygen ligand in models of the oxymyoglobin active site and its cobalt-substituted analog. Our calculations are performed for iron-porphyrin and cobalt-porphyrin complexes with imidazole and oxygen as axial ligands, and we investigate the effect of the distal histidine in the structure and dynamics of the metal-oxygen unit (MeO(2), Me = Fe, Co). We find that the interaction between the distal histidine and the oxygen ligand is stronger for the cobalt complex than for the iron one, consistent with the superoxide ion character of the bound O(2). The dynamics of the O(2) ligand can be described as oscillations of the O-O axis projection on the porphyrin plane within a porphyrin quadrant combined with frequent jumps from one quadrant to another. However, the ligand motion is significantly faster for CoO(2) compared to FeO(2). As a result, the iron complex shows localized ligand sites, whereas for cobalt several configurations are possible. This gives support to the highly dynamic motion of the oxygen ligand found in several experiments on cobalt oxymyoglobin and model complexes and underlines the higher mobility of the CoO(2) fragment compared to FeO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号