首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic development of in-vitro fertilized rabbit ova was assessed following in-vitro culture in four different serum supplemented media. A mixture of Basal Medium Eagle (BME) and Ham's F10 medium (1:1) provided better support for in-vitro development than Ham's F10, BME, or regular acidic saline (RAS). In-vitro embryonic development in the BME/Ham's F10 mixture was synchronous with in-vivo development through at least 55 hr of culture. After 54 hr of culture, embryos transferred to the oviduct of a synchronous pseudopregnant recipient were able to implant at the same rate as simultaneously transferred embryos grown in vivo. BME/Ham's F10 supplemented with 10% newborn calf serum was highly supportive of rabbit embryo development following in-vitro fertilization.  相似文献   

2.
The influence of culture temperature and gas atmosphere on in-vitro fertilization and embryo development was examined in the domestic cat. In Exp. 1, eggs were fertilized and cultured in 5% CO2 in air at 37, 38 or 39 degrees C. Experiment 2 evaluated the effects of 5% CO2 in air; 5% CO2, 5% O2 and 90% N2; and 10% CO2 in air. Fertilization (cleavage) and development to the morula/blastocyst stage were not influenced (P greater than 0.05) by variations in temperature and gas composition. Despite changing these culture conditions, egg cleavage averaged approximately 75% and greater than 80% of the 2-cell embryos proceeded to morulae in vitro. However, the partial in-vitro morula-to-blastocyst developmental block normally observed in this species was not removed.  相似文献   

3.
Co-culture of rabbit one-cell embryos with rabbit oviduct epithelial cells   总被引:4,自引:0,他引:4  
Summary Rabbit 1-cell embryos were co-cultured with rabbit oviduct epithelial cells (ROEC) to determine if ROEC can enhance embryo development in vitro. Primary ROEC were cultured in serum-free media at 39°C in a 5% CO2:95% air environment. In experiment 1, 1-cell embryos were co-cultured in Ham's F10 with freshly collected or 4-d-old cultures of ROEC seeded in plastic culture wells or on collagen membranes. One-cell embryos cultured without ROEC served as controls. After 65 h in culture, embryos were stained with Hoechst 33342 to determine the number of cells per embryo. Cell numbers were higher (P<0.035) in all co-culture treatments when compared to controls. Optimal development was obtained by co-culture with 4-d-old ROEC grown on plastic (P<0.003). In experiment 2, Ham's F10, Medium 199, and CZB with glucose medium were compared for their ability to support embryo development in the presence or absence of 4-d-old ROEC growth on plastic. Cell number and the percentage of embryos becoming blastocysts were significantly (P<0.002) higher for embryos cultured in Medium 199 compared to the other media tested. In Medium 199, co-culture with ROEC resulted in only a slight, nonsignificant increase in cell number over culture in Medium 199 alone (110 vs. 96 cells). However, the percentage of embryos reaching the blastocyst stage when co-cultured in Medium 199 with ROEC (49%) was nearly twice (P=0.01) that of embryos in Medium 199 without ROEC (26%). In experiment 3, transfer of embryos cultured in Medium 199 with or without ROEC of 24 or 48 h resulted in no significant differences in posttransfer development. These data indicate a beneficial effect of ROEC on blastogenesis and a salvage effect of ROEC on cell proliferation in embryos grown in a less supportive medium such as Ham's F10. This work was supported by a Multicenter Cooperative Program on Non-HumanIn Vitro Fertilization and Preimplantation Development and was funded by the National Institute of Child Health and Human Development, NIH, Bethesda, MD, through Cooperative Agreement HD 21939.  相似文献   

4.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

5.
This study was conducted to examine the hypothesis that nitric oxide (NO) affects prehatching development of bovine oocytes fertilized in vitro. In experiment 1, inseminated oocytes were cultured in a cumulus–granulosa cell (CG) coculture system to which 0.008 or 0.04 mM of sodium nitroprusside (SNP), a spontaneous NO releaser, was added at 18 or 60 hr postinsemination. Embryo development was greatly (P < 0.001) inhibited by the addition of SNP, regardless of time of addition or SNP concentration. In experiment 2, eight-cell embryos were cultured singly in a defined medium, to which 0.0016, 0.008, or 0.04 mM of SNP was added. Development to the blastocyst stage was greatly (P < 0.001) decreased after addition of SNP compared with no addition. Higher (P < 0.02) concentration of NO metabolites was found in developmentally arrested embryos than in developing embryos at 144 hr postinsemination (experiment 3). In experiment 4, blastocyst formation of oocytes cocultured with CGs was significantly (P < 0.02) increased after addition of hemoglobin (Hb, 1 μg/ml), an NO scavenger. Prehatching development of oocytes was significantly (P < 0.05) increased after addition of Hb at different time intervals (18, 60, or 144 hr postinsemination) in experiment 5. Embryo development was not enhanced by Hb addition to the culture medium in the absence of CGs (experiment 6). Prehatching development of eight-cell embryos derived from a Hb-containing culture system was not promoted by the further addition of Hb after transfer of the embryos to a defined and CG-free single-embryo culture system (experiment 7). In conclusion, NO, which may be secreted from CGs, has an inhibitory role in prehatching development of bovine oocytes fertilized in vitro, and use of an NO scavenger, Hb, in a coculture system enhances blastocyst formation. Mol. Reprod. Dev. 50:45–53, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
One-cell and two-cell embryos from three random-bred strains of mice–CF1, Dub:(ICR), and CFW (Swiss-Webster)–were cultured to the blastocyst stage in Spindle's, Earle's, Ham's F10, Whittingham's T6, or Hoppe and Pitts' medium. CFW embryos were more successful than CF1 and Dub:(ICR) embryos in developing to the blastocyst stage in all five media. Dub:(ICR) and CFW two-cell embryos showed the best development in Spindle's, Whittingham's T6, and Hoppe and Pitts', whereas CF1 two-cell embryos were most successful in developing in Hoppe and Pitts' medium. Similar results were obtained with one-cell embryos, although fewer developed to the blastocyst stage, and T6 rather than Hoppe and Pitts' medium sustained the best development of CF1 one-cell embryos. For all strains, the least successful development was in Ham's F10, but CFW embryos did show good development in this medium. In addition to the effects of various media on mouse embryo development, our results indicate that the strain of mouse used for the bioassay of media is of critical importance. Random-bred CFW (Swiss-Webster) mice are as suitable as a hybrid strain for this purpose.  相似文献   

8.
Four experiments were conducted to test the effects of Eagle's non-essential amino acids (NEAA) and essential amino acids (EAA), glycine, and the RNA polymerase inhibitor α-amanitin, on the development of preimplantation rabbit embryos in modified protein-free KSOM medium. Embryos were distributed randomly into different treatments and cultured in 5% O2:5% CO2:90% N2. In experiment 1, 100% of the embryos became blastocysts in the medium with Eagle's IX NEAA and 0.5X EAA, but 100% stopped development at the morula stage in KSOM without amino acids. These morulae failed to develop further when transferred to amino acid supplemented medium after 72 hr of culture. Glycine alone in modified KSOM (experiment 2) was ineffective in supporting development of 8–16-cell stage embryos past the morula stage. In experiment 3, the addition of IX NEAA and 0.5X EAA at 0, 12, 24, 36, and 48 hr of culture resulted, respectively, in 57, 65, 65, 44, and 14% blastocysts on Day 3 (P<0.05) and 86, 77, 77, 78, and 69% on Day 5 (P<0.05). Omission of Eagle's amino acids until 48 hr clearly delayed embryo development. In experiment 4, when α-amanitin (20 μM) was added to the medium containing Eagle's amino acids after 0, 12, 24, 36, and 48 hr of culture most embryos cleaved only once or twice after adding the α-amanitin. Without the inhibitor, 94% of the zygotes developed into blastocysts. These results indicate that modified KSOM or KSOM plus glycine could not support rabbit embryo development past the morula stage, but this block was overcome by adding Eagle's amino acids. An exogenous source of amino acids was not critical for embryo development during the first 24 hr of culture, but was required after that for development to equal controls. Addition of α-amanitin at multiple pre-blastocyst stages limited further embryo development to one or two cleavage divisions, with no blastocyst development. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The present study compared the developmental potential and uptake of nutrients by embryos from pre‐pubertal and adult cows. Oocytes retrieved from ovaries of 5 to 7 month old calves and adult cows were matured and fertilized in vitro. Embryos were cultured in SOFaa to the blastocyst stage (7 days post‐insemination). At successive stages of development, rates of glucose and pyruvate uptake were measured non‐invasively by microfluorescence for individual embryos. Fertilization was equivalent in embryos from pre‐pubertal and adult cows (P > 0.05), however development to blastocyst was significantly lower in embryos from pre‐pubertal cows (9.8% versus 33.7%, respectively; P < 0.05). Total blastocyst cell number was not different between pre‐pubertal and adult material (P > 0.05). Glucose uptake was exponential (pre‐pubertal, r = 0.82; adult, r = 0.82; P < 0.05), with an increase in uptake beyond the 8‐ to 16‐cell stage. Glucose uptake was significantly lower in embryos from pre‐pubertal cows at the 2‐ to 4‐cell stages (1.5 versus 3.0 pmoles/embryo/hr; P < 0.05), but was equivalent to the adult cow at all other stages of development (P > 0.05). Pyruvate uptake was low until the blastocyst stage. Pyruvate uptake by embryos from pre‐pubertal cows was significantly different to adult cows at the 1‐cell stage (2.7 versus 4.6 pmoles/embryo/hr, respectively; P < 0.05) and 2‐ to 4‐cell stages (4.9 versus 3.6 pmoles/embryo/hr, respectively; P < 0.05). Pyruvate uptake was equivalent in the two groups in the later stages of development (P > 0.05). Perturbations in the uptake of nutrients by embryos from pre‐pubertal cows were most likely due to the presence of a high proportion of developmentally incompetent embryos. Further, embryos from pre‐pubertal cows that did develop to the blastocyst were as viable as blastocysts from adult cows with respect to nutrient uptakes and total cell number. Mol. Reprod. Dev. 54:49–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Factors affecting the production of platelet activating factor (PAF) by mouse embryos during culture in vitro were investigated. Detectable levels of embryo-derived PAF were produced within 1-4 hr with maximum PAF activity being observed after 6 hr of culture in vitro. The amount of PAF detected in media after 24 hr of culture of two-cell embryos was equivalent to 12.8 ng PAF/embryo. However, differences in activity were apparent with increased time in culture. Reduced synthesis of PAF during culture in vitro was supported by the observation that morulae stage embryos collected fresh from the reproductive tract displayed more PAF activity than morulae resulting from the 48 hr culture of two-cell embryos. In addition to determining production characteristics of PAF by embryos, we also show that the production of CO2 from carbon-1 position of lactate is positively correlated with the ability of embryos to develop during subsequent culture in vitro and therefore could be used as a measure of embryo viability. Furthermore, culture of embryos in media supplemented with PAF resulted in an increase in lactate utilization demonstrating a direct effect of PAF on the embryo. As PAF is produced by preimplantation embryos, an autocoid role of PAF in regulating embryo development is implicated. Therefore, the reduced production of PAF by embryos in vitro may explain the decreased viability of embryos commonly observed following their culture in vitro.  相似文献   

11.
The present study aimed to determine the influence of exogenous epidermal growth factor (EGF) on in vitro preimplantation porcine embryo development and its mRNA expression for EGF receptor (EGFR). Oocytes were aspirated from abattoir ovaries, selected and cultured in defined, protein-free media for 44 hr before in vitro fertilization (IVF). Thirty-six hours after IVF, two-cell stage embryos were selected and treated or cultured until embryo treatment. In experiment 1, compact morulae were selected on day 4 after IVF and randomly allocated into 5 groups: NCSU 23 with PVA as group 1; NCSU 23 with PVA and 0.1 ng/ml, 1.0 ng/ml, 10.0 ng/ml EGF as group 2, 3, 4, respectively; NSCU 23 with 0.4% BSA as group 5. In experiment 2, treatment groups were the same as in experiment 1 except that 0.1% crystallized BSA was added to both washing media and all treatment groups instead of PVA. In experiments 3 and 4, two-cell stage embryos were treated and cultured in the same experimental design as experiments 1 and 2, respectively. RT-PCR was used to detect the mRNA expression of EGF receptor in compact morulae and blastocysts. The PCR products were subjected to direct DNA sequencing. There was no significant improvement in the development rate of embryos from compact morulae to blastocysts in the presence of various EGF concentrations (0.1, 1.0, 10.0 ng/ml) versus without EGF addition. They were all significantly lower than those embryos cultured in the continuous presence of 0.4% BSA. However, when a reduced concentration (0.1%) of crystallized BSA was added to all the treatment groups, a significantly lower rate of embryo development was observed in control media (NCSU23 with 0.1% crystallized BSA) compared with those developed in culture media with 0.4% BSA. With the addition of EGF at 10 ng/ml (with 0.1% BSA), embryo development rates were significantly improved over the control group (P < 0.05) and were as good as those rates in 0.4% BSA culture group. When embryos were selected and treated from the 2-cell stage, they did not develop to blastocyst stages after five more days' culture without any protein (BSA) or growth factor addition. When 0.1% BSA was included in the media, blastocyst formation rates were significantly improved by EGF addition at the concentration of both 1.0 or 10 ng/ml (P < 0.05) as compared to 0.0 or 0.1 ng/ml. EGFR mRNA was detected in both compact morulae and blastocyst stages of porcine embryos and confirmed by direct DNA sequencing. Our results indicate that IVM-IVF porcine embryo developmental rates could be improved by the addition of EGF in the culture media with the presence of a reduced amount of defined BSA (>97% albumin). However, EGF alone was not able to elicit any stimulatory effects on embryo development in the absence of protein supplementation. Further studies are needed to investigate the potential synergistic factors in embryo culture media to eventually define the porcine embryo culture media.  相似文献   

12.
The effects of recombinant human activin A on the development of bovine one-cell embryos matured and fertilized in vitro were investigated. In experiment 1, one-cell embryos were cultured in a chemically-defined medium, of modified synthetic oviduct fluid supplemented with 1 mg/ml polyvinyl alcohol (mSOF-PVA), containing different concentrations of activin (0, 0.1, 1, 10, and 100 ng/ml) until 240 hr after in vitro fertilization. The addition of -1 ng/m activin to mSOF-PVA improved development to the blastocyst stage (14.5–17.1%), compared with no addition of activin (5.6%). However, there was no significant difference in hatching rate of embryos among treatments. In experiments 2 and 3, the embryos were also cultured in MSOF-PVA at various periods of exposure to 10 ng/ml activin to evaluate (development to the morula and blastocyst stages, respectively. The proportion of morulae was significantly higher in culture with activin at 20–120 hr postinsemination (37.2%) than with control (25.7%). Total number of cells in morulae at 120 hr postinsemination significantly increased by the addition of activin at 20–72 hr (26.1 cells) and 20–120 hr (24.2 cells) postinsemination, compared with control (20.1 cells). When activin was added to the medium during 20–120 hr and 20–192 hr postinsemination, the percentages of blastocysts (18.0% and 18.7%, respectively) were significantly higher than in the control (9.6%). However, the total number of cells in blastocysts was not significantly different. These results demonstrate that activin stimulates the development of bovine one-cell embryos to the morula and blastocyst stages in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Techniques for in vitro production of bovine embryos have evolved to the extent that applications for the commercial production of calves have been proposed. However, little is known about the epidemiological implications of the procedures. One concern is the introduction of noncytopathic bovine viral diarrhea virus (BVDV). In this study, follicular oocytes (n=247) collected from 10 cows were matured and fertilized in vitro and presumptive zygotes were cultured for 7 d. Primary cultures of bovine oviductal epithelial cells for use during in vitro fertilization and culture were divided into 2 groups. Treated oviductal cells were infected with BVDV while control cells were not exposed to the virus. Two approximately equal groups of mature oocytes from each cow were inseminated, and the presumptive zygotes were cultured with infected or noninfected oviductal cells. After 7 d in culture, zona pellucida-intact morulae/blastocysts and degenerated ova were washed, sonicated and assayed for the presence of virus. The rates of cleavage and development were also compared by Chi-square analysis. After washing, virus was not isolated from morulae and blastocysts but was isolated from some groups of degenerated ova. Infections of oviductal cells were inapparent and did not significantly (P>0.05) affect rates of cleavage or development.  相似文献   

14.
Oviductal and uterine embryos were collected from mares at 5 to 7 days following ovulation 1) to evaluate the effects of oviductal tissue explants on in vitro growth and development of equine embryos and 2) to study the morphologic development of equine embryos in culture. Embryos were incubated for 5 days in a medium (control group) or in medium supplemented with oviductal tissue explants (co-culture group). Embryos were evaluated and the media changed daily. Following 5 days in culture, 10 10 (100%) control embryos and 27 29 (93%) co-cultured embryos had doubled in diameter. All embryos that were recovered as morulae developed to the blastocyst stage in culture. By 5 days in culture, 6 10 (60%) control embryos and 19 29 (66%) co-cultured embryos had reached the hatching blastocyst stage of development. By 3 days in culture, significantly more (P<0.05) control embryos versus co-cultured embryos had degenerated (4 10 vs 2 29 , respectively). By 5 days in culture, significantly more (P<0.01) control embryos versus co-cultured embryos had degenerated (6 10 vs. 3 29 , respectively). Embryos cultured with oviductal tissue were sustained longer than embryos cultured in medium alone. Hatching was characterized by the blastocyst squeezing through a small opening in the zona pellucida or by the zona pellucida thinning over approximately half of the blastocyst surface and subsequently disappearing entirely.  相似文献   

15.
Oocyte preservation is still a challenge in the cat. The aim of this study was to evaluate the efficiency of oocyte vitrification in cryoloop in the domestic cat and to assess the embryonic development after IVF with cryopreserved semen. In vitro matured cat oocytes were vitrified in cryoloop after exposure to 10% ethylene glycol (EG, 0.9 M) in hepes synthetic oviductal fluid (HSOF) for 1 min, 20% EG (1.8M) in HSOF for 1 min, and 40% EG (3.6M), 10mg/ml Ficoll 70 and 0.3M sucrose in HSOF for 20s. Warmed oocytes were fertilized in vitro with frozen-thawed semen collected by electroejaculation and presumptive zygote were cultured in vitro for 10 days. Results showed that percentage of degenerated oocytes was higher (P<0.01), while cleavage rate and morulae blastocysts rate on day 6 were significantly lower (P<0.01) for vitrified oocytes than control. Blastocyst rate on day 8 was higher (P<0.01) for control oocytes than vitrified counterparts, and also developmental ability was higher (P<0.05) for non-vitrified oocytes, while the hatched blastocyst rate on day 10 was higher (P<0.05) for vitrified oocytes than control. In conclusion cat oocytes can be vitrified in cryoloop with a fairly good survival rate, cleavage rate and embryo development until pre-implantation stage.  相似文献   

16.
Although current embryo culture media are based on carbohydrate metabolism of embryos, little is known about metabolism of endogenous lipids. L-carnitine is a β-oxidation cofactor absent in most culture media. The objective was to investigate the influence of L-carnitine supplementation on bovine embryo development. Abattoir-derived bovine cumulus oocyte complexes were cultured and fertilized. Post-fertilization, presumptive zygotes were transferred into a basic cleavage medium ± carbohydrates (glucose, lactate and pyruvate) ± 5 mm L-carnitine and cultured for 4 days in vitro. In the absence of carbohydrates during culture, embryos arrested at the 2- and 4-cell stages. Remarkably, +L-carnitine increased development to the morula stage compared to +carbohydrates alone (P < 0.001). The beneficial effects of L-carnitine were further demonstrated by inclusion of carbohydrates, with 14-fold more embryos reaching the morula stage after culture in the +carbohydrates +L-carnitine group compared to the +carbohydrates group (P < 0.05). Whereas there was a trend for +L-carnitine to increase ATP (P = 0.09), ADP levels were higher and ATP: ADP ratio were 1.9-fold lower (main effect, P < 0.05) compared to embryos cultured in -L-carnitine. Therefore, we inferred that +L-carnitine embryos were more metabolically active, with higher rates of ATP-ADP conversion. In conclusion, L-carnitine supplementation supported precompaction embryo development and there was an additive effect of +L-carnitine +carbohydrates on early embryo development, most likely through increased β-oxidation within embryos.  相似文献   

17.
The present study examined the effect of epidermal growth factor (EGF) during in vitro maturation (IVM) and embryo culture on blastocyst development in the pig. In experiment 1, cumulus oocyte complexes were cultured in North Carolina State University (NCSU) 23 medium containing porcine follicular fluid, cysteine, hormonal supplements, and with or without EGF (0–40 ng/ml) for 20–22 hr. They then were cultured for an additional 20–22 hr without hormones. After maturation, cumulus-free oocytes were co-incubated with frozen-thawed spermatozoa for 5–6 hr. Putative embryos were transferred to NCSU 23 containing 0.4% BSA and cultured for 144 hr. In experiment 2, oocytes were matured in medium containing 10 ng/ml EGF, inseminated, and putative embryos were cultured in the presence of 0–40 ng/ml EGF. In experiment 3, oocytes were cultured in the presence of 0, 10 and 40 ng/ml EGF to examine the kinetics of meiotic maturation. In experiment 4, 2- to 4-cell and 8-cell to morula stage embryos derived from oocytes matured with 10 ng/ml EGF were transferred to the oviduct and uterus, respectively, of each of three recipient gilts (3 and 4 days post-estrus, respectively). The presence or absence of EGF during IVM did not affect cumulus expansion, nuclear maturation, fertilization parameters, or cleavage rate. However, compared to no addition (21%), presence of 1 (33%) and 10 ng/ml EGF (42%) during IVM increased (P < 0.01) the rate of blastocyst development in a concentration-dependent manner. Compared to 10 ng/ml EGF, higher concentrations (20 and 40 ng/ml) reduced (P < 0.01) blastocyst development in a concentration-dependent manner (35% and 24%, respectively). No difference was observed between no addition and 40 ng/ml EGF (22%). Compared to no addition and 10 ng/ml EGF, a significantly (P < 0.001) higher proportion (25% vs. 55%) of oocytes reached metaphase II stage 33 hr after IVM with 40 ng/ml EGF. However, no difference was observed at 44 hr. Transfer of embryos to six recipient gilts resulted in three pregnancies and birth of 18 piglets. The results show that EGF at certain concentrations in IVM medium can influence the developmental competence of oocytes. However, addition of EGF during the culture of pig embryos derived from oocytes matured in the presence of EGF is without effect. Birth of piglets provides evidence that embryos derived from oocytes matured in a medium containing EGF are viable. Mol. Reprod. Dev. 51:395–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The proportion of total cells in the blastocyst allocated to the inner cell mass (ICM) and trophectoderm (TE) is important for future development and may be a sensitive indicator to evaluate culture conditions. The number of cells and their distribution within the two primary cell lineages were determined for the rabbit embryo developing in vivo after superovulation or nonsuperovulation or embryo transfer and compared with embryos developing in vitro. Comparisons were made with cultured embryos or embryos grown in vivo until 3.5, 4.0, and 4.5 days of age. Embryos from superovulated rabbits developed in vivo for 3.5, 4.0, and 4.5 days, respectively, had 361, 758, and 902 total cells (P<0.05), and in nonsuperovulated rabbits 130, 414, and 905 total cells (P<0.05), with increasing proportions of ICM cells over time (P<0.05). One-cell embryos recovered from superovulated females and transferred to nonsuperovulated recipients developed more slowly with 70, 299, and 550 total cells after 3.5, 4.0, and 4.5 days of culture (P<0.05), respectively. The proportion of ICM cells increased with age of the embryo. Corresponding values for one-cell embryos cultured in vitro resulted in 70, 299, and 550 total cells (P<0.05). However, in vitro culture of morula-stage embryos in the presence of fetal bovine serum for 24 hr did not delay growth. In addition, the proportions of ICM/total cells were 0.17, 0.25, and 0.29 for embryos developing in vitro at 3.5, 4.0, and 4.5 days, respectively, similar to those for embryos developing in vivo at each of the three recovery times. These data establish for the first time the number and proportion of cells allocated to the ICM of the rabbit embryo developing in vivo or under defined conditions in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Embryo transfer experiments were carried out to study the developmental capacity of cultured rabbit embryos when transferred to recipients of variable postovulatory maturity. Rabbit embryos were flushed from the oviduct at 26 hours postcoitum (pc) and cultured in a modified Ham's F-10 medium supplemented with bovine serum albumin (BSA) for a period of 70 hours. At 96 hours pc the cultured embryos, which ranged from the early morula to the expanding blastocyst stage, were transferred to pseudopregnant recipients mated to vasectomized males 36 to 96 hours prior to the transfer procedure. Greatest embryo survival occurred when transfers were made to either the oviducts or uterine horns of recipients at 48 hours pc. Intermediate results for both implantation rates and number of young born were obtained with recipients at 36, 60, 72, and 84 hours pc. Transferred embryos consistently failed to survive the uterine environment of recipients 96 hours pc at transfer although this group was synchronous with embryonic chronological age. Oviductal transfers were generally more successful than uterine transfers. Markedly higher rates of embryo survival resulted from embryos that were collected 60 and 72 hours pc and transferred directly to synchronous recipients without an interim period of culture. Dissimilarity of development for in vivo grown rabbit embryos and those cultured in synthetic medium is demonstrated.  相似文献   

20.
This study was designed to investigate the developmental competency of in vitro-matured and in vitro-fertilized bovine embryos co-cultured with a) medium alone, b) bovine oviductal cells (BOC), c) bovine conditioned medium (BCM), d) porcine oviductal cells (POC), and porcine conditioned medium (PCM). Follicular oocytes collected from cattle at local slaughterhouses were matured and fertilized in vitro. Epithelial cells were scraped from the luminal surface tissue of either bovine or porcine oviducts collected after ovulation, cultured in TALP + 10% heat-treated fetal calf serum, and the conditioned media were collected following a 3- to 5-d incubation period. After 18 to 22 h of sperm-ova co-incubation, the fertilized and/or cleaved ova were randomly assigned to 1 of 5 co-culture groups. The results revealed that the efficiency of medium alone in supporting embryo development from the 16- to 32-cell stage up to the blastocyst stage was significantly (P<0.01) lower than of embryos co-cultured with either bovine or porcine epithelial cells, or with conditioned media from such cells. Epithelial cell co-culture, regardless of cell source, was more effective (P<0.01) than culture with conditioned medium. Co-culture in medium containing or conditioned by porcine cells was more effective in supporting bovine embryo development than co-culture with bovine-derived cells or conditioned medium. These data support the concept that oviductal cells produce a soluble component which enhances embryo development to the blastocyst stage in vitro and that the effect is not species-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号