首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The spatial and temporal patterns of macromolecular syntheses in oocytes and somatic auxiliary cells of the snail Planorbarius corneus have been investigated by autoradiography and cytophotometry. Oogenesis has been divided into three stages, comprising early meiosis up to diplotene (stage I), previtellogenetic growth phase (stage II), and vitellogenesis (stage III). No DNA synthesis was found in any oocyte stage. In stage-I oocytes, only nucleoli were found labelled with 3H-uridine. Oocyte nuclei of stage II and III actively synthesize RNA in nucleoli and chromosomes. The most intense incorporation of uridine in chromatin probably occurs during the previtellogenesis — vitellogenesis transition period during which cytological findings suggest well developed lampbrush chromosomes. RNA synthesis in amphinucleoli of stage-III oocytes is restricted to basophilic nucleolar parts, whereas acidophilic parts (protein bodies) neither synthesize nor store RNA. During vitellogenesis oocytes incorporate amino acids into yolk platelet proteins. Radioactive proteins are found in yolk platelet precursors 5 h after injection of the tracer and in yolk platelets 3 h thereafter. The labelling pattern suggests that oocytes synthesize certain hitherto unidentified yolk components. No evidence for the participation of follicle cells in synthesis and transport of vitellogenic proteins has been obtained from autoradiography. Cytological findings suggest an important role for these cells in oogenesis. They are highly active in RNA and protein synthesis. Cellular differentiation is accompanied by polyploidization of the nuclei which attain a highest DNA content of 256 c. Polyploidization probably occurs in incremental steps as indicated by complete endomitotic chromosomal cycles. Autoradiographs show that, during vitellogenesis, oocytes do not incorporate significant amounts of glucose, and only certain follicle cells were labelled with glucose, probably indicating the synthesis of glycogen.  相似文献   

2.
Distribution of nucleolar argentophylic proteins, fibrillarin and 53 kDa protein, in highly polyploid nuclei of antipodal cells of Triticum aestivum L. was studied at different stages of the embryo sac development. The main results are as follows. 1. Ag-NOR proteins and fibrillarin form clusters are distributed in the giant nucleoli, whereas 53 kDa protein is mainly localized on the nucleolar periphery. Ag-NOR proteins and fibrillarin are accumulated as globular nucleolar-like particles--micronucleoli. 2. Dynamics of Ag-NOR proteins, fibrillarin and 53 kDa protein depends on the proliferative activity of endosperm cells. In embryo sacs with non-dividing endosperm cells at interphase stages, Ag-NOR proteins and fibrillarin were observed only within nucleoli and micronucleoli. In embryo sacs with dividing endosperm cells, fibrillarin and 53 kDa protein formed heterogeneous globular bodies varying in size. Simultaneously, some argentophylic material was observed in giant chromosomes. This may be due, presumably, to a partial or complete disappearance of the nucleoli of antipods and transition of some nucleolar components into the peripheral material of giant polytene chromosomes. We suggest that giant nuclei of antipodal cells may undergo cyclic transformation similar to those in the nuclei of dividing cells.  相似文献   

3.
Detection of fibrillarin in nucleolar remnants and the nucleolar matrix   总被引:3,自引:0,他引:3  
In order to gain further insights into the fundamental structure of the nucleolus, nucleolar remnants of Xenopus and chickens were examined for the presence of fibrillarin and nucleolus organizer region (NOR) silver staining. Nucleolar remnants of Xenopus nucleated red blood cells were found to contain easily detectable amounts of fibrillarin and NOR silver staining. Upon examination of various tissues, fibrillarin and NOR silver staining were detected in nucleoli of Xenopus liver hepatocytes and within nucleoli of oocytes and follicle cells from ovaries of mature female toads. By comparison, nucleolar remnants of adult chicken nucleated red blood cells contained only trace amounts of fibrillarin and NOR silver staining, whereas red blood cell nucleolar remnants of immature chicks had easily detectable amounts of fibrillarin and NOR silver staining. Nucleoli from hepatocytes of both adult and immature chickens demonstrated comparable levels of fibrillarin and NOR silver staining. Since fibrillarin was found in nucleolar remnant structures, we tested for (and detected) its presence in residual nucleoli of in situ nuclear matrix derived from HeLa cells. These findings are discussed in terms of the basic structural and functional organization of the nucleolus.  相似文献   

4.
5.
6.
Summary The distribution of a nuclear antigen ofPleurodeles waltl oocytes, recognized by the monoclonal antibody B24/1, has been studied during oogenesis and early embryonic development. In stage I oocytes the antigen was localized in the nucleoplasm and on two atypical structures of lampbrush chromosomes, the spheres (S) and the mass (M). The immunostaining increased as the oocyte developed. In stage VI oocytes, the nucleoplasm and spheres showed intense staining. At this stage, the nucleoplasm often contained free spheres which were also labelled. The staining of M diminished during oogenesis, as did its size. Immunoblots of nuclear proteins of oocytes at different stages confirmed that there was an accumulation of this protein during oogenesis. During embryonic development, the nuclei of all the cells of blastula and gastrula were labelled by this antibody: there was no embryonic regionalization. Starting from the neurula stage, the staining progressively disappeared from the nuclei of ectodermal and mesodermal cells. In the tailbud stage, only the endodermal cell nuclei showed faint staining. Immunoblots of proteins from embryos of different stages showed that the quantity of this protein was constant until the young gastrula stage and then decreased progressively; in the young tailbud stage, this protein was practically absent. B24/1 is the first described protein of the sphere. This protein is accumulated in the oocyte nucleus and behaves like a maternal polypeptide, shifting early in the nuclei during embryonic development. Thus, B24/1 probably has a function required from the early developmental stages, perhaps in relation with small nuclear ribonucleoproteins.  相似文献   

7.
Summary The ovaries of small and large adult Gecarcinus were studied histologically and histochemically at various stages in the annual cycle. At all seasons of the year, dividing cells are seen within germinal nests in the ovary. Following division, the cells within the germinal nest enlarge and appear to move out into the stroma, forming cords of young oocytes that become encapsulated by follicle cells. Glycogen, not demonstrable in cells within the germinal nests, is present in the perinuclear cytoplasm of both young and mature oocytes. Lipid is distributed peripherally in the cytoplasm of the oocytes. Deoxyribonucleoprotein is demonstrable within the nuclei of germinal nest cells and of the young oocytes; it is not detectable within the nuclei of the large oocytes. The histological observations suggest that oogenesis occurs throughout the reproductive life of Gecarcinus.Dedicated to Professor Berta Scharrer on her 60th birthday in love, respect and admiration. — This work was supported in part by U.S.P.H.S. Training Grant GM-102.I express my thanks to the late Dr. Helen W. Deane and Dr. Dorothy E. Bliss for their help and encouragement.  相似文献   

8.
We expressed two green fluorescent protein (GFP)-tagged Nopp140 isoforms in transgenic Drosophila melanogaster to study nucleolar dynamics during oogenesis and early embryogenesis. Specifically, we wanted to test whether the quiescent oocyte nucleus stored maternal Nopp140 and then to determine precisely when nucleoli formed during embryogenesis. During oogenesis nurse cell nucleoli accumulated GFP-Nopp140 gradually such that posterior nurse cell nucleoli in egg chambers at stage 10 were usually brighter than the more anterior nurse cell nucleoli. Nucleoli within apoptotic nurse cells disassembled in stages 12 and 13, but not all GFP-Nopp140 entered the oocyte through inter-connecting cytoplasmic bridges. Oocytes, on the other hand, lost their nucleoli by stage 3, but GFP-Nopp140 gradually accumulated in oocyte nuclei during stages 8–13. Most oocyte nuclei at stage 10 stored GFP-Nopp140 uniformly, but many stage 10 oocytes accumulated GFP-Nopp140 in presumed endobodies or in multiple smaller spheres. All oocyte nuclei at stages 11-12 were uniformly labeled, and GFP-Nopp140 diffused to the cytoplasm upon nuclear disassembly in stage 13. GFP-Nopp140 reappeared during embryogenesis; initial nucleologenesis occurred in peripheral somatic nuclei during embryonic stage 13, one stage earlier than reported previously. These GFP-Nopp140-containing foci disassembled at the 13th syncytial mitosis, and a second nucleologenesis occurred in early stage 14. The resulting nucleoli occupied nuclear regions closest to the periphery of the embryos. Pole cells contained GFP-Nopp140 during the syncytial embryonic stages, but their nucleologenesis started at gastrulation. This work was supported by the National Science Foundation (grant MCB-0234245). O'Keith Dellafosse was supported by the Louisiana Alliance for Minority Participation (LAMP).  相似文献   

9.
10.
In mammals, the nucleolus of full‐grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full‐grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non‐treated or actinomycin D‐treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re‐injection of nucleoli from growing oocytes (23%), but not when nucleoli from full‐grown oocytes were re‐injected into enucleolated, growing oocytes (49%). When enucleolated, full‐grown oocytes were injected with nucleoli from growing or full‐grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full‐grown oocytes injected with nucleoli from full‐grown oocytes matured to metaphase II (56%), whereas injection with growing‐oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing‐oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full‐grown oocyte nucleolus has lost the ability. Mol. Reprod. Dev. 78:426–435, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Mouse oocytes were found to synthesize proteins actively at the germinal vesicle, metaphase I, metaphase II, and pronuclear (6 hours post-fertilization) stages. The qualitative pattern components being synthesized in vitro, as demonstrated using polyacrylamide gel electrophoresis, changed throughout maturation and fertilization. Oocytes were arrested at metaphase I by greater than 0.1 mug/ml cycloheximide or actinomycin D. The protein pattern in oocytes cultured in the presence of actinomycin D progresses to a metaphase II pattern in spite of the nuclear maturation arrest, indicating a dissociation between meiotic maturation and the changes in the pattern of proteins synthesized at different stages of maturation.  相似文献   

12.
The nucleoli of dictyate-stage growing oocytes in rat ovaries were examined both with routine electron microscopy and electron microscopy after silver nitrate and ammoniacal silver nitrate (Ag-AS) staining. The nucleoli of the unilaminar follicular oocytes consist of twisted strands of dense fibrillar components, aggregates of granular components, and small fibrillar centers. After Ag-AS staining, silver grains are numerous on the dense fibrillar strands, fewer on the fibrillar centers, and very sporadic on the granular aggregates. The same stainability of three nucleolar components with the Ag-AS method was also confirmed in the nucleoli segregated by actinomycin D. During the transition of growing oocytes from bilaminar to plurilaminar follicle stage, the nucleolar dense fibrillar strands gradually conglomerate and are transformed into large and compact spherules. The stainability of dense fibrillar components with the Ag-AS method was lost along with this nucleolar transformation. These results may provide some new clues on the functional significance of Ag-AS-positive proteins in the nucleoli.  相似文献   

13.
14.
15.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

16.
Association between the nucleolus and the coiled body   总被引:20,自引:0,他引:20  
By means of light and electron microscopic immunocytochemistry, we have localized p80-coilin, a specific protein marker for coiled bodies, in mammalian cell lines as well as in primary rat neuron cultures. p80-coilin-stained nuclear bodies, which also contained fibrillarin, could be subsequently silver stained by a method specific for the visualization of nucleolar organizer regions. In cycling cells, most coiled bodies were not associated with nucleoli, whereas in rat neurons such as association was frequent. The treatment of cycling cells with actinomycin D or 5,6-dichloro-1-beta-D-ribo furanosyl-benzimidazole led to nucleolar segregation and/or disintegration, and to an association of p80-coilin staining structures with nucleoli. p80-coilin-positive structures contained fibrillarin in both untreated and treated cells. These results support the opinion that there might be a special association between coiled bodies and nucleoli, particularly in neuronal cells.  相似文献   

17.
18.
Fibrillarin: a new protein of the nucleolus identified by autoimmune sera   总被引:40,自引:0,他引:40  
Autoimmune serum from a patient with scleroderma was shown by indirect immunofluorescence to label nucleoli in a variety of cells tested including: rat kangaroo PtK2, Xenopus A6, 3T3, HeLa, and human peripheral blood lymphocytes. Immunoblot analysis of nucleolar proteins with the scleroderma antibody resulted in the labeling of a single protein band of 34 kD molecular weight with a pI of 8.5. Electron microscopic immunocytochemistry demonstrated that the protein recognized by the scleroderma antiserum was localized exclusively in the fibrillar region of the nucleolus which included both dense fibrillar and fibrillar center regions. Therefore, we have named this protein "fibrillarin". Fibrillarin was found on putative chromosomal nucleolar organizer regions (NORs) in metaphase and anaphase, and during telophase fibrillarin was found to be an early marker for the site of formation of the newly forming nucleolus. Double label indirect immunofluorescence and immunoelectron microscopy on normal, actinomycin D-segregated, and DRB-treated nucleoli showed that fibrillarin and nucleolar protein B23 were predominantly localized to the fibrillar and granular regions of the nucleolus, respectively. RNase A and DNase I digestion of cells in situ demonstrated that fibrillarin was partially removed by RNase and completely removed by DNase. These results suggest that fibrillarin is a widely occurring basic nonhistone nucleolar protein whose location and nuclease sensitivity may indicate some structural and/or functional role in the rDNA-containing dense fibrillar and fibrillar center regions of the nucleolus.  相似文献   

19.
Immunoelectron microscopy with anti-nucleolin defined substructures within the multiple nucleoli of biosynthetically active stage II–III oocytes and within the nucleoli of relatively quiescent stage VI oocytes of Xenopus laevis. Dense fibrillar components (DFCs) of nucleoli from stage II–III oocytes consisted of nucleolonemas that radiated from a continuous DFC sheath surrounding fibrillar centers (FCs). Discernible granular regions (GRs) were absent in these same nucleoli. Conversely, stage VI oocyte nucleoli displayed compacted DFCs and prominent GRs. Immunofluorescence microscopy then tracked fibrillarin, nucleolin, and condensed DNA through oogenesis and into progesterone-induced meiotic maturation and nuclear breakdown. In stage II–III oocyte nucleoli, fibrillarin was enriched near the FC-DFC boundaries, while nucleolin was distributed throughout these same DFCs. Both proteins were enriched within the compacted DFCs of stage VI oocyte nucleoli. Staining with (DAPI) 4′,6-diamidino-2-phenylindole showed condensed DNA within nucleolar FCs of both stage II–III and stage VI oocyte. Upon nuclear breakdown, we found fibrillarin and nucleolin in small particles and in the surrounding cytoplasm. Although we saw no trace of fibrillarin or nucleolin in nuclear remnants prepared just minutes later, DAPI-stained particles remained within these preparations, thus suggesting that FCs were at least slow to disassemble. Received: 18 March 1996 / Accepted: 16 April 1996  相似文献   

20.
The amphibian oocyte nucleus is thought to provide a maternal store of protein required in embryogenesis. The fate of germinal vesicle proteins has been studied by comparing polypeptide patterns of oocytes, embryos, and several adult organs of Xenopus laevis on two-dimensional gels. A combination of silver staining and fluorography of radiolabeled protein on gels was used to analyze maternal and newly synthesized polypeptides in embryogenesis. Comparison of protein patterns was facilitated and corroborated by application of monoclonal antibodies against several germinal vesicle proteins. These were characterized by immunoblotting from two-dimensional gels, and polypeptides of identical structure were recognized in oocyte nuclei, embryos, and tadpoles. The following conclusions were drawn: (1) Almost all prevalent germinal vesicle proteins can be continuously traced in embryos up to swimming tadpole stages, although their patterns of new synthesis are greatly different, some are not radiolabeled in the embryo but solely provided by the maternal store. (2) Many of the polypeptides occurring in oocyte nuclei are also found in one or several organs of the adult. (3) Tissue specificities of germinal vesicle proteins, previously detected by immunocytochemistry with monoclonal antibodies, could be confirmed by independent biochemical methods. (4) As has been previously shown by immunohistological methods, oocyte nuclear antigens are shed into the cytoplasm of the maturing egg, and are reaccumulated in the nuclei of the embryonic cells, each at a characteristic developmental stage. These shifts between intracellular compartments are not accompanied by a change of the covalent structure of the antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号