首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow cytometric sperm sorting based on X and Y sperm DNA difference has been established as the only effective method for sexing the spermatozoa of mammals. The standard method for verifying the purity of sorted X and Y spermatozoa has been to reanalyze sorted sperm aliquots. We verified the purity of flow-sorted porcine X and Y spermatozoa and accuracy of DNA reanalysis by fluorescence in situ hybridization (FISH) using chromosome Y and 1 DNA probe. Eight ejaculates from 4 boars were sorted according to the Beltsville Sperm Sexing method. Porcine chromosome Y- and chromosome 1-specific DNA probes were used on sorted sperm populations in combination with FISH. Aliquots of the sorted sperm samples were reanalyzed for DNA content by flow cytometry. The purity of the sorted X-bearing spermatozoa was 87.4% for FISH and 87.0% for flow cytometric reanalysis; purity for the sorted Y-bearing spermatozoa was 85.9% for FISH and 84.8% for flow cytometric reanalysis. A total of 4,424 X sperm cells and 4,256 Y sperm cells was examined by FISH across the 8 ejaculates. For flow cytometry, 5,000 sorted X spermatozoa and 5,000 Y spermatozoa were reanalyzed for DNA content for each ejaculate. These results confirm the high purity of flow sorted porcine X and Y sperm cells and the validity of reanalysis of DNA in determining the proportions of X- and Y-sorted spermatozoa from viewing thousands of individual sperm chromosomes directly using FISH.  相似文献   

2.
This study was carried out to determine if a rapid, simultaneous detection system using chromosome Y- and 1-bearing boar spermatozoa was applicable for sexing embryos. Porcine embryos were recovered from gilts and sows 4 to 6 d after mating, and whole embryos or biopsy cells were mounted on a glass slide with a small amount of fixative (methanol: acetic acid: distilled water = 9:1:4). The samples were then stained by means of a fluorescence in situ hybridization (FISH) procedure developed specifically for the detection of Y-bearing spermatozoa. Hybridization was performed using digoxigenin (dig)-labeled chromosome Y- specific DNA, and biotin-labeled chromosome 1-specific DNA sequences were detected as a signal of FITC and Texas Red on nucleus visualized DAPI-stain. Proportions of whole embryos labeled with chromosome 1-probe were 17 and 97% at the 3 to 16 and > or = 32 cell stage, respectively. Of the 93 biopsied embryos analyzed by FISH, 85 embryos (91%) could be accurately classified as male or female. Of the 65 biopsied embryos, 60 embryos (92%) had a clear blastocoele and a inner cell mass after 48 h of culture in vitro, and these embryos were evaluated as available embryos. One out of 4 recipient gilts which received sexed embryos at transfer farrowed 12 piglets of the expected sex. The results of this study demonstrated that porcine embryos at the > or = 32 cell stage can be sexed within 2 h using the FISH method. Moreover further development of the FISH technique could make it an effective tool for the study of early porcine embryos and for the control of porcine sex.  相似文献   

3.
This study was carried out to determine whether Y-bearing porcine spermatozoa could be detected by in situ hybridization using a digoxigenin (Dig)-labelled DNA probe specific to the Y chromosome produced by polymerase chain reaction (PCR). A conventional PCR (with Dig-dUTP) was performed using a set of oligonucleotide primers (5′-AAGTGGTCAGCGTGTCCATA-3′ and 5′-TTTCTCCTGTATCCTCCTGC-3′) for 236 bp fragment of porcine male-specific DNA sequence and 1.25 × 104 template white blood cells obtained from a boar. When fluorescence in situ hybridization with the Dig-labelled DNA probe was applied to the metaphase chromosome spreads prepared from both boar and gilts, the fluorescein signal was only detected on the long arm of the Y chromosome. In addition, immunocytochemical detection with the Dig-labelled DNA probe and alkaline phosphatase-labeled anti-Dig was applied to both sperm nuclei pretreated with dithiothreitol and white blood cells; 51% of sperm nuclei and 96% of white blood cells obtained from boar were labelled, whereas none of white blood cells obtained from gilts were labelled with the Dig-labelled DNA probe. The results indicated that in situ hybridization with porcine male-specific DNA probe produced by PCR made possible the direct visualization of Y-bearing porcine spermatozoa by in situ hybridization. © 1995 Wiley-Liss, Inc.  相似文献   

4.
This study was carried out to demonstrate bovine Y chromosome-bearing spermatozoa by rapid fluorescence in situ hybridization (FISH), using a digoxigenin (Dig)-labeled DNA probe specific to bovine Y chromosome. Before the FISH procedure, sperm heads were treated for decondensation with dithiothreitol (DTT) and glutathione (GSH) with or without heparin supplementation. Concentrations of either above 2 mM DTT or above 100 mM GSH induced swelling of the sperm head, which resulted in sufficient detection of the Y chromosome signal in sperm nuclei by rapid FISH (49.8 to 53.4%). When FISH was used with 2 mM DTT or 100 mM GSH on specimens from 7 sires, the rate of detection of the Y chromosome signal varied among sires (5.4 to 49.6%), especially that of the GSH treatment. Supplementation of GSH with heparin (100 U/mL), however, could induce reliable, repeatable detection of the Y chromosome signal in sperm nuclei of all the 7 sires (48.4 to 50.3%). These results show that in bovine spermatozoa decondensed with GSH and heparin, rapid FISH can detect Y chromosome-bearing spermatozoa.  相似文献   

5.
Double fluorescence in situ hybridization (FISH) was used to detect sex chromosomes in decondensed human sperm nuclei. Biotinylated X chromosome specific (TRX) and digoxigenin-labeled Y chromosome specific (HRY) probes were simultaneously hybridized to sperm preparations from 12 normal healthy donors. After the hybridization, the probes were detected immuno-cytochemically, using two different and independent affinity systems. Ninety-six percent of the 12,636 sperm showed fluorescent labeling, of which 47.4% were haploid X and 46.8% were haploid Y. A frequency of 0.46% of XX-bearing sperm (0.28% disomic, 0.18% diploid) and 0.38% YY-bearing sperm (0.21% disomic, 0.17% diploid) was found. The overall proportions of X- and Y-bearing sperm in the ejaculates were 47.9% and 47.2%, respectively, which was not significantly different from the expected 50:50 ratio. In addition 0.21% of cells appeared to be haploid XY-bearing sperm, 0.62% were diploid XY-bearing cells, and 0.05% of cells were considered to be tetraploid cells. The application of double FISH to human sperm using X-chro-mosome and Y-chromosome probes has allowed a more accurate assessment of the sex chromosal complements in sperm than single FISH method and quinacrine staining for Y-bodies. © 1993 Wiley-Liss, Inc.  相似文献   

6.
X and Y specific probes were identified in order to apply the fluorescent in situ hybridization (FISH) technique to bovine spermatozoa. For Y chromosome detection, the BRY4a repetitive probe, covering three quarters of the chromosome, was used. For X chromosome detection, a goat Bacterial Artificial Chromosome (BAC) specific to the X chromosome of bovine and goats and giving a strong FISH signal was used. Each probe labeled roughly 45% of sperm cells. The hybridization method will be useful for evaluating the ratio of X- and Y- bearing spermatozoa in a sperm sample and consequently can be used to evaluate the efficiency of sperm sorting by different techniques such as flow cytometry.  相似文献   

7.
With the development of a direct visualization of sex chromosome in a single sperm by fluorescence in situ hybridization (FISH) technique, the frequency of aberration (aneuploidy) in spermatozoa in several mammals has been investigated. However, there is no report in the incidence of X-Y aneuploidy in the sperm population of dogs. Therefore, in this study, the aneuploidy in dog spermatozoa was examined by multicolor FISH using specific molecular probes for canine sex chromosomes and autosome. Semen from eight male Labrador retrievers was used as specimen. For decondensation of sperm nuclei, the specimen was treated with 1 M NaOH for 4 minutes at room temperature. Probes for chromosomes X, Y, and 1, labeled with SpectrumGreen, Cy3 and Cy5, respectively, were hybridized with decondensed spermatozoa. Fluorescence in situ hybridization signals in sperm heads were clearly detected in each specimen, regardless of the sperm donor. The FISH signal of at least one of the three probes was detected in all sperm heads examined. There was no significant difference between the theoretical ratio (50:50) and the observed ratio of X and Y chromosomes in spermatozoa of all the eight dogs. Mean percentage of sex chromosome aneuploidy was 0.127% (ranged between 0% and 0.316%). This percentage of canine sex chromosome aneuploidy was lower than the one reported in cattle, horses, river buffalo, and goats sperm, but higher than that observed in mice and sheep.  相似文献   

8.
Flow cytometric sorting of non-human primate sperm nuclei   总被引:7,自引:0,他引:7  
Pre-determination of the sex of offspring has implications for management and conservation of captive wildlife species, particularly those with single sex-dominated social structures. Our goal is to adapt flow cytometry technology to sort spermatozoa of non-human primate species for use with assisted reproductive technologies. The objectives of this study were to: (i) determine the difference in DNA content between X- and Y-bearing spermatozoa (ii) sort sperm nuclei into X- and Y-enriched samples; and (iii) assess the accuracy of sorting. Spermatozoa were collected from two common marmosets (Callithrix jacchus), seven hamadryas baboons (Papio hamadryas) and two common chimpanzees (Pan troglodytes). Human spermatozoa from one male were used as a control. Sperm nuclei were stained (Hoechst 33342), incubated and analyzed using a high-speed cell sorter. Flow cytometric reanalysis of sorted samples (sort reanalysis, 10,000 events/sample) and fluorescence in situ hybridization (FISH; 500 sperm nuclei/sample) were used to evaluate accuracy of sorting. Based on fluorescence intensity of X- and Y-bearing sperm nuclei, the difference in DNA content between X and Y populations was 4.09 +/- 0.03, 4.20 +/- 0.03, 3.30 +/- 0.01, and 2.97 +/- 0.05%, for marmoset, baboon, chimpanzee and human, respectively. Sort reanalysis and FISH results were similar; combined data revealed high levels of purity for X- and Y-enriched samples (94 +/- 0.9 and 93 +/- 0.8%, 94 +/- 0.7 and 94 +/- 0.5%, 91 +/- 0.9 and 97 +/- 0.6%, 94 +/- 0.6 and 94 +/- 0.9%, for marmoset, baboon, chimpanzee and human, respectively). These data indicate the potential for high-purity sorting of spermatozoa from non-human primates.  相似文献   

9.
The objective of this research was to develop chromosome-specific probes for use in evaluating aneuploidy in boar spermatozoa through the application of fluorescence in situ hybridization (FISH) technology. A multicolor FISH method was developed to detect aneuploidy in the sperm of boars using DNA probes specific for small regions of chromosomes 1, 10, and Y. The average frequencies of sperm with disomy for chromosomes 1, 10, and Y were 0.075%, 0.067%, and 0.094%, respectively. The incidence of disomy did not differ significantly by chromosome. The average frequencies of diploidy were 0.177% for 1-1-10-10 and 0.022% for Y-Y-10-10. Thus, the incidence of overall diploidy (1-1-10-10) was significantly higher than that of disomy for the chromosomes examined (P < 0.01 for disomy of the autosomes and P < 0.05 for disomy of the Y chromosome). No significant age or breed effects on disomy and diploidy rates and no significant interindividual variations in disomy or diploidy were found. The observed level of numerical chromosome aberrations in pig sperm appear to be within the range of the baseline frequencies reported so far in men.  相似文献   

10.
Fluorescent in situ hybridization (FISH) in decondensed sperm nuclei has been used to determine the percentage of normal/balanced or unbalanced spermatozoa produced by an inv(6)(p23q25) carrier, and the possible interchromosomal effect (ICE) of the reorganized chromosomes on other chromosome pairs. A dual color FISH with specific subtelomeric probes for the 6p and 6q regions was performed to determine the segregation pattern of the inverted chromosome. ICE on chromosomes 18, X and Y was assessed using a triple color FISH assay. In the segregation analysis 10,049 spermatozoa were analyzed, and only 45.7% of them were normal/balanced. The high number of unbalanced gametes in our carrier could be the consequence of the large size of the inverted segment. This situation could facilitate the formation of an inversion loop, where formation of an odd number of chiasmata (usually one) result in the production of 50% normal and 50% unbalanced sperm. Furthermore, an increase in the disomy rate for chromosome 6 was also observed. In the screening for ICE, 10,007 spermatozoa were analyzed. The disomy rate for the sex chromosomes and chromosome 18 were not significantly different from those found in our controls, suggesting no evidence of interchromosomal effects in this patient. The use of FISH in decondensed sperm nuclei has proved once more to be an accurate approach to determine the chromosome anomalies in sperm and could help to better establish a reproductive prognosis.  相似文献   

11.
Sperm nuclei from eight normal, healthy donors were hybridized in situ with the biotin-labeled Y-specific pHY2.1 DNA probe to evaluate the X:Y ratio, the location of the Y chromosome, and the frequency of Y aneuploidy in human sperm. The streptavidine-horseradish-peroxidase and DAB detection system used permitted the unequivocal identification of sperm heads with zero, one, or two hybridization signals and proved superior to either quinacrine staining or radioactive in situ hybridization. The low incidence of 0.27% of sperm nuclei with two Y chromosomes that was found is similar to the frequency of XYY males among newborns. The average proportions of X- and Y-bearing sperm nuclei were 50.3% and 49.4%, respectively, corresponding to the expected 1:1 ratio. The Y heterochromatin was located in the central part of the nucleus in 58% of the Y-carrying sperm cells.  相似文献   

12.
Human gametes and zygotes studied by nonradioactive in situ hybridization   总被引:6,自引:0,他引:6  
A nonradioactive in situ hybridization technique was applied to human gametes and abnormally fertilized or developed zygotes. Using haptenized chromosome-specific probes, visualization was obtained using immunocytochemistry to achieve a fluorescent stain on specific hybrids. Using a chromosome 1-specific DNA probe, almost all spermatozoa gave a positive result, i.e., one hybridization signal per cell could be observed. Furthermore, it was possible to identify sperm cells with two spots, suggesting nondisjunction. Two cleavage arrested embryos from different patients showed both: two brightly fluorescent spots and two weaker spots with the same DNA probe. Using a Y-specific DNA probe the percentages of positive spermatozoa from the normal males ranged between 48.1% and 49.1%. In an embryo with four grossly haploid chromosome sets, three fluorescent spots were obtained with the Y-specific DNA probe, indicating the penetration of three spermatozoa.  相似文献   

13.
Meiotic segregation of the sex chromosomes was analysed in sperm nuclei from a man with Klinefelter’s karyotype by three-colour FISH. The X- and Y-specific DNA probes were co-hybridized with a probe specific for chromosome 1, thus allowing diploid and hyperhaploid spermatozoa to be distinguished. A total of 2206 sperm nuclei was examined; 958 cells contained an X chromosome, 1077 a Y chromosome. The ratio of X : Y bearing sperm differed significantly from the expected 1 : 1 ratio (χ2 = 6.96; 0.001 < P < 0.01). Sex-chromosomal hyperhaploidy was detected in 2.67% of the cells (1.22% XX, 1.36% XY, 0.09% YY) and a diploid constitution in 0.23%. Although the frequency of 24,YY sperm was similar to that detected in fertile males, the frequencies of 24,XX, 24,XY and diploid cells were significantly increased. A sex-chromosomal signal was missing in 4.26% of the spermatozoa. This percentage appeared to be too high to be attributed merely to nullisomy for the sex chromosomes and was considered, at least partially, to be the result of superposition of sex-chromosomal hybridization signals by autosomal signals in a number of sperm nuclei. The results contribute additional evidence that 47,XXY cells are able to complete meiosis and produce mature sperm nuclei. Received: 6 November 1996  相似文献   

14.
The meiotic segregation of a balanced reciprocal translocation (7;8) (q11.21;cen) was analysed by interphase fluorescence in situ hybridization (FISH) on carrier spermatozoa. A dual interphase FISH technique was applied to 34527 decondensed sperm heads with chromosome-7- and chromosome-8-specific alpha-satellite probes. Analysis with such probes was possible according to the cytogenetic characteristics of these translocation breakpoints, which implied a centromeric breakpoint. The majority of the analysed nuclei (56.70%) showed normal (30.40%) or balanced (26.30%) chromosomal equipment resulting from alternate segregation during meiosis. A total of 14935 spermatozoa (43.26%) was unbalanced with a predominance of gametes resulting from adjacent-I (25.10%) or adjacent-II (11.10%) segregation ; such gametes could produce partial mono- or trisomies at term. The frequency of analysed cells resulting from a 3:1 segregation, which could induce complete mono- and trisomies at term, was 7.06%; 0.04% of scored cells were diploid. The same dual-FISH technique was carried out either with chromosome-15- and chromosome-18-specific probes or with gonosome-specific probes, in order to detect a possible interchromosomal effect. A significant increase of disomic18 spermatozoa was observed in the carrier. Such studies are not yet frequent. Multicolour-FISH seems a rapid and accurate tool for direct analyses of spermatogenetic segregation mechanisms in a carrier of balanced chromosomal abnormalities and provides interesting information for characterizing the possible risks for the offspring. Received: 14 November 1997 / Accepted: 19 December 1997  相似文献   

15.
Analysis of sperm karyotypes and two-color fluorescent in situ hybridization (FISH) on sperm nuclei were carried out in a man heterozygous for the pericentric inversion inv(9)(p11q13). Sperm chromosome complements were obtained after in vitro fusion of zona-free hamster oocytes and donor sperm. A total of 314 sperm complements was analyzed: 153 (48.7%) carried the inverted chromosome 9 and 161 (51.3%) carried the normal one. None of the sperm complements contained a recombinant chromosome 9, suggesting that no chiasmata were formed in the heterochromatic region. The frequency of structural chromosome aberrations unrelated to the inversion (8.3%) and the frequency of conservative aneuploidy (3.2%) were within the limits observed in our control donors. The proportions of X-bearing (47.3%) and Y-bearing sperm (52.7%) were not significantly different from the expected 1:1 ratio. The percentage of disomy for chromosome 21 was analyzed by two-color FISH in 10 336 sperm nuclei. The disomy rate for chromosome 21 (0.30%) was not significantly different from that found in our controls. These results suggest that the risk for this man of producing chromosomally abnormal offspring or spontaneous abortions was not increased, and do not support the existence of an interchromosomal effect for chromosome 21. Received: 28 October 1996  相似文献   

16.
Chromosomal imbalance in gametes and embryos is one of the factors contributing to early embryonic mortality. Although the rate of chromosomally abnormal sperm cells is low and usually does not exceed 1%, there is no clear indication of fertilizing potential of such gametes. The aim of the experiment was to investigate the type and incidence of numerical chromosomal aberrations in spermatozoa produced by fertile boars used in artificial insemination (AI). We used the protocol of fluorescent in situ hybridization (FISH) on sperm interphase nuclei with molecular probes for porcine chromosome pairs 1 and 10. Altogether 12?348 sperm cells were examined. Disomy was observed in spermatozoa of all seven AI boars whereas only one diploid cell was identified in all screened sperm cells. The average rate of chromosomally unbalanced sperm was 0.105% (13/12 348) with an inter-individual variation from 0.048% to 0.194%. Among abnormal sperm cells, both disomy (0.097%) and diploidy (0.008%) were detected. Nullisomy was not included into calculations. The estimated aneuploidy rate calculated by doubling the number of disomic cells was 0.194%. Chromosome pair 10 was significantly more often involved in non-disjunction (75%, 9/12 aneuploid sperm cells) than chromosome pair 1 (25%, 3/12). We have shown for the pig that the rate of disomic cells falls into a range presented by other authors, whereas that of diploid spermatozoa appeared to be lower in the present study. In conclusion, numerical chromosome aberrations were present in spermatozoa of all AI boars analyzed in this study. Therefore, it can be assumed that the presence of unbalanced spermatozoa at the level observed in fertile males does not significantly affect their reproductive potential.  相似文献   

17.
Fluorescence in situ hybridization (FISH) was performed on human interphase sperm nuclei to determine the utility of this technique for aneuploidy detection. Repetitive DNA sequences specific for chromosomes 1, 12 and X were biotinylated and hybridized with mature sperm, which had been treated with cetyltrimethylammonium bromide and dithiothreitol to render them accessible to the probes. Detection of bound probe was accomplished with fluoresceinated avidin and antiavidin. For each of the chromosomes studied, chromosome number was determined by counting the fluorescent signals, representing hybridized regions, within the sperm nuclei. The frequencies for disomy, that is for nuclei containing two signals, for chromosomes 1, 12 and X were 0.06%, 0.04% and 0.03%, respectively. The congruence of these results with those determined by the cross-species hamster oocyte-human sperm assay, and the high efficiency of hybridization indicate that FISH is a sensitive and reliable tool for aneuploidy detection in human sperm.  相似文献   

18.
In humans, deviations from a 1:1 male:female ratio have been identified in both chromosomally normal and trisomic live births: among normal newborns there is a slight excess of males, among trisomy 18 live borns a large excess of females, and among trisomy 21 live borns an excess of males. These differences could arise from differential production of or fertilization by Y- or X-bearing sperm or from selection against male or female conceptions. To examine the proportion of Y- and X-bearing sperm in normal sperm and in sperm disomic for chromosomes 18 or 21, we used three-color FISH (to the X and Y and either chromosome 18 or chromosome 21) to analyze >300,000 sperm from 24 men. In apparently normal sperm, the sex ratio was nearly 1:1 (148,074 Y-bearing to 148,657 X-bearing sperm), and the value was not affected by the age of the donor. Certain of the donors, however, had significant excesses of Y- or X-bearing sperm. In disomy 18 sperm, there were virtually identical numbers of Y- and X-bearing sperm; thus, the excess of females in trisomy 18 presumably is due to selection against male trisomic conceptions. In contrast, we observed 69 Y-bearing and 44 X-bearing sperm disomic for chromosome 21. This is consistent with previous molecular studies, which have identified an excess of males among paternally derived cases of trisomy 21, and suggests that some of the excess of males among Down syndrome individuals is attributable to a nondisjunctional mechanism in which the extra chromosome 21 preferentially segregates with the Y chromosome.  相似文献   

19.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

20.
In contrast to human embryos, there are very few studies published on the frequency of chromosomal aneuploidy in farm animals. The objectives of this study were to apply a three-color fluorescent in situ hybridization (FISH) method for evaluating aneuploidy in porcine embryos using chromosome-specific DNA probes, establish baseline frequencies of aneuploidy in embryos and compare the results with our previous findings of aneuploidy in spermatozoa and oocytes. The embryos were collected from superovulated gilts, which were slaughtered 48 h after insemination. FISH was performed using probes specific for the centromeric regions of porcine chromosomes 1, 10 and Y. Altogether 403 blastomeres from 114 porcine embryos were successfully investigated. Diploidy was observed in 101 (88.6%) embryos, triploidy in 2 (1.8%) embryos, mosaicism/mixoploidy in 9 (7.9%) embryos, and trisomy for chromosomes 1 or 10 in 2 (1.8%) embryos. No blastomere showed aneuploidy for chromosome Y. These findings correspond with the frequencies of aneuploidy we have found previously in porcine germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号