首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is paper reviews the preparation and use of soluble synthetic combinatorial libraries (SCLs) made up of millions of peptide and nonpeptide sequences for the identification of highly active individual compounds. First presented in 1991. SCLs have been prepared in a number of different lengths and formats, and are composed entirely of L -, D -, and unnatural amino acids. Also, existing peptide libraries have been chemically transformed to yield large diversities of nonpeptidic compounds. This review encompasses the published work from this laboratory using SCLs for the identification of antigenic sequences recognized by monoclonal antibodies, novel peptide agonists and antagonists to opioid receptors, new trypsin inhibitors, novel antibacterials, and compounds that inhibit melittin's hemolytic activity. SCLs offer a fundamental, practical advance in the study of interactions between peptide and nonpeptide sequences and their biochemical or pharmacological targets. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Three proteins, GTPase activating protein (GAP), neurofibromatosis 1 (NF1) and the yeast inhibitory regulator of the RAS-cAMP pathway (IRA2), have the ability to stimulate the GTPase activity of Ras proteins from higher animals or yeast. Previous studies indicate that certain lipids are able to inhibit this activity associated with the mammalian GAP protein. Inhibition of GAP would be expected to biologically activate Ras protein. In these studies arachidonic acid is shown also to inhibit the activity of the catalytic fragments of the other two proteins, mammalian NF1 and the yeast IRA2 proteins. In addition, phosphatidic acid (containing arachidonic and stearic acid) was inhibitory for the catalytic fragment of NF1 protein, but did not inhibit the catalytic fragments of GAP or IRA2 proteins. These observations emphasize the biochemical similarity of these proteins and provide support for the suggestion that lipids might play an important role in their biological control, and therefore also in the control of Ras activity and cellular proliferation.  相似文献   

3.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

4.
Mixture-based peptide synthetic combinatorial libraries (SCLs) represent a valuable source for the development of novel agents to control infectious diseases. Indeed, a number of studies have now proven the ability of identifying active peptides from libraries composed of thousands to millions of peptides in cell-based biosystems of varying complexity. Furthermore, progressing knowledge on the importance of endogenous peptides in various immune responses lead to a regain in importance for peptides as potential therapeutic agents. This article is aimed at providing recent studies in our laboratory for the development of antimicrobial or antiviral peptides derived from mixture-based SCLs using cell-based assays, as well as a short review of the importance of such peptides in the control of infectious diseases. Furthermore, the use of positional scanning (PS) SCL-based biometrical analyses for the identification of native optimal epitopes specific to HIV-1 proteins is also presented.  相似文献   

5.
Formation of the cytolytic membrane attack complex of complement on host cells is inhibited by the membrane-bound glycoprotein, CD59. The inhibitory activity of CD59 is species restricted, and human CD59 is not effective against rat complement. Previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues responsible for the species selective function of human CD59 map to a region contained between positions 40 and 66 in the primary structure. By comparative analysis of rat and human CD59 models and by mutational analysis of candidate residues, we now identify the individual residues within the 40-66 region that confer species selective function on human CD59. All nonconserved residues within the 40-66 sequence were substituted from human to rat residues in a series of chimeric human/rat CD59 mutant proteins. Functional analysis revealed that the individual human to rat residue substitutions F47A, T51L, R55E, and K65Q each produced a mutant human CD59 protein with enhanced rat complement inhibitory activity with the single F47A substitution having the most significant effect. Interestingly, the side chains of the residues at positions 47, 51, and 55 are all located on the short single helix (residues 47-55) of CD59 and form an exposed continuous strip parallel to the helix axis. A single human CD59 mutant protein containing rat residue substitutions at all three helix residues produced a protein with species selective activity comparable to that of rat CD59. We further found that synthetic peptides spanning the human CD59 helix sequence were able to inhibit the binding of human CD59 to human C8, but had little effect on the binding of rat CD59 to rat C8.  相似文献   

6.
The latent production of angiotensin I-converting enzyme (ACE) Inhibitors from tartary buckwheat (BW) was investigated, and the peptides responsible for ACE inhibition characterized. Intact buckwheat was found to exhibit ACE inhibitory activity having an IC50 value of 3.0 mg/ml. The activity of the protein fraction (IC50: 0.36 mg protein/ml) was not enhanced by pepsin treatment. Pepsin, followed by chymotrypsin and trypsin hydrolysis, resulted in a significant increase in the ACE inhibitory activity (IC50: 0.14 mg protein/ml). The rutin contained in the buckwheat did not exhibit any ACE inhibition. A single oral administration of BW digest lowered the systolic blood pressure of a spontaneously hypertensive rat. Thus, BW proteins offer a potential resource for producing ACE inhibitory peptides during the digestion process. From the di-/tri-peptide fraction (DTPF) of the BW digest, inhibitory peptides were identified. The magnitude (%) of the total ACE inhibitory contribution of each identified peptide, relative to the overall inhibition of the DTPF, was about 41%.  相似文献   

7.
A key step in the development of new hydrophilic pharmaceuticals is to get them through biological barriers. Cell-penetrating peptides, CPPs, have been shown previously to enter cells both in vitro and in vivo by a non-endocytotic mechanism and to be able to carry large cargo molecules with them. Recently, we showed that a small peptide, pVEC, from murine vascular endothelial cadherin, has the characteristics to be classified as a protein derived CPP. Here we have further investigated pVEC together with its all-D analog for cellular uptake, intra- and extracellular stability, and their enzymatic degradation. The two peptides, pVEC and all-D pVEC, translocate into aortic endothelial cells and murine fibroblasts by a non-endocytotic mechanism. In phosphate buffer, pVEC remains intact while the C-terminal lysine is quickly removed in human serum and serum-containing media. Both pVEC and pVEC without the C-terminal Lys were detected by mass spectrometry inside the two cell types tested. The pVEC half-life is 10.5 min in phosphate buffer containing 10 units of trypsin and 44.6 min in phosphate buffer containing 4.2 units of carboxypeptidase A and 18 units of carboxypeptidase B. In contrast topVEC, the all-D analog remains intact in serum and resists enzymatic degradation.  相似文献   

8.
The chaperone activity and biophysical properties of the 19 amino acid peptide DFVIFLDVKHFSPEDLTVK, identified as the functional element in alphaA-crystallin and here referred to as mini-alphaA-crystallin, were studied using light scattering and spectroscopic methods after altering its sequence and enantiomerism. The all-D and all-L conformers of the peptide do not show marked differences in their chaperone-like activity against heat-induced aggregation of alcohol dehydrogenase at 48 degrees C and dithiothreitol-induced aggregation of insulin. The retro peptide does not show any secondary structure and is also unable to act like a chaperone. Both all-L and all-D peptides lose their beta-sheet conformations, hydrophobicity and chaperone-like activity at temperatures > 50 degrees C. However, upon cooling, a significant portion of those properties was regained, suggesting temperature-dependent, reversible structural alterations in the peptides under investigation. We propose that both the hydrophobicity and beta-sheet conformation of the functional element of alphaA-crystallin are essential for chaperone-like activity.  相似文献   

9.
The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier.  相似文献   

10.
PSP (parotid secretory protein)/SPLUNC2 (short palate, lung and nasal epithelium clone 2) is expressed in human salivary glands and saliva. The protein exists as an N-glycosylated and non-glycosylated form and both appear to induce agglutination of bacteria, a major antibacterial function for salivary proteins. Both forms of PSP/SPLUNC2 bind LPS (lipopolysaccharide), suggesting that the protein may also play an anti-inflammatory role. Based on the predicted structure of PSP/SPLUNC2 and the location of known antibacterial and anti-inflammatory peptides in BPI (bactericidal/permeability-increasing protein) and LBP (LPS-binding protein), we designed GL13NH2 and GL13K, synthetic peptides that capture these proposed functions of PSP/SPLUNC2. GL13NH3 agglutinates bacteria, leading to increased clearance by macrophages and reduced spread of infection in a plant model. GL13K kills bacteria with a minimal inhibitory concentration of 5-10 μg/ml, kills bacteria in biofilm and retains activity in 150?mM NaCl and 50% saliva. Both peptides block endotoxin action, but only GL13K appears to bind endotoxin. The peptides do not cause haemolysis, haemagglutination in serum, inhibit mammalian cell proliferation or induce an inflammatory response in macrophages. These results suggest that the GL13NH2 and the modified peptide GL13K capture the biological activity of PSP/SPLUNC2 and can serve as lead compounds for the development of novel antimicrobial and anti-inflammatory peptides.  相似文献   

11.
12.
Angiotensin I converting enzyme (ACE) inhibitory peptides can induce antihypertensive effects after oral administration. By means of an ACE inhibitory peptide database, containing about 500 reported sequences and their IC(50) values, the different proteins in pea and whey were quantitatively evaluated as precursors for ACE inhibitory peptides. This analysis was combined with experimental data from the evolution in ACE inhibitory activity and protein degradation during in vitro gastrointestinal digestion. Pea proteins produced similar in silico scores and were degraded early in the in vitro digestion. High ACE inhibitory activity was observed after the simulated stomach phase and augmented slightly in the simulated small intestine phase. The major whey protein beta-lactoglobulin obtained the highest in silico scores, which corresponded with the fact that degradation of this protein in vitro only occurred from the simulated small intestine phase on and resulted in a 10-fold increase in the ACE inhibitory activity. Whey protein obtained total in silico scores of about 124 ml/mg, compared to 46 ml/mg for pea protein, indicating that whey protein would be a richer source of ACE inhibitory peptides than pea protein. Although beta-lactoglobulin is only partially digested, a higher ACE inhibitory activity was indeed found in the whey (IC(50) = 0.048 mg/ml) compared to the pea digest (IC(50) = 0.076 mg/ml). In silico gastrointestinal digestion of the highest scoring proteins in pea and whey, vicilin and albumin PA2, and beta-lactoglobulin, respectively, directly released a number of potent ACE inhibitory peptides. Several other ACE inhibitory sequences resisted in silico digestion by gastrointestinal proteases. Briefly, the quantitative in silico analysis will facilitate the study of precursor proteins on a large scale and the specific release of bioactive peptides.  相似文献   

13.
Membrane proteins play a large variety of functions in life and represent 30% of all genomes sequenced. Due to their hydrophobic nature, they are tightly bound to their biological membrane, and detergents are always required to extract and isolate them before identification by mass spectrometry (MS). The latter, however remains difficult. Peptide mass fingerprinting methods using techniques such as MALDI-TOF MS, for example, have become an important analytical tool in the identification of proteins. However, PMF of membrane proteins is a real challenge for at least three reasons. First, membrane proteins are naturally present at low levels; second, most of the detergents strongly inhibit proteases and have deleterious effects on MALDI spectra; and third, despite the presence of detergent, membrane proteins are unstable and often aggregate. We took the mitochondrial uncoupling protein 1 (UCP1) as a model and showed that differential acetonitrile extraction of tryptic peptides combined with the use of polystirene Bio-Beads triggered high resolution of the MALDI-TOF identification of mitochondrial membrane proteins solubilized either with Triton-X100 or CHAPS detergents.  相似文献   

14.
Despite almost 30 years since the identification of the human immunodeficiency virus type I (HIV-1), development of effective AIDS vaccines has been hindered by the high mutability of HIV-1. The HIV-1 co-receptors CCR5 and CXCR4 are genetically stable, but viral proteins may mutate rapidly during the course of infection. CXCR4 is a seven transmembrane G protein-coupled receptor, possessing an N-terminal region (NT) and three extracellular loops (ECL1-3). Previous studies have shown that the CXCR4-ED-derived peptides inhibit the entry of HIV-1 by interacting with gp120, an HIV-1 envelope glycoprotein. In the present study, antigenicity of CXCR4-derived peptides has been investigated and the anti-HIV-1 effects of induced antisera have been assessed. It was found that CXCR4-ED-derived antigen molecules immunize mice, showing that the linear peptides have higher antigenicity than the cyclic peptides. The L1- and L2-induced antisera inhibited the HIV-1 entry significantly, while anti-N1 antibodies have no inhibitory activity. This study produced promising examples for the design of AIDS vaccines which target the human protein and can overcome mutability of HIV-1.  相似文献   

15.
Proteases are involved in various biological functions. Thus, inhibition of their activities is scientifically interesting and medically important. However, there is no systematic method established to date to generate endopeptidase inhibitory peptides. Here, we report a general system to identify endopeptidase inhibitory peptides based on the use of in vitro evolution. Using this system, we generated peptides that inhibit cathepsin E (CE) specifically at a submicromolar IC50. This system generates protease inhibitor peptides utilizing techniques of cDNA display, selection-by-function, Y-ligation-based block shuffling, and others. We further demonstrated the importance and effectiveness of a secondary library for obtaining small-sized and active peptides. CE inhibitory peptides generated by this method were characterized by a small size (8 to 12 aa) and quite different sequences, suggesting that they bind to different sites on CE. Typical CE inhibitory peptide aptamers obtained here (Pi101; SCGG IIII SCIA) have half an inhibition activity (Ki; 5 nM) of pepstatin A (potent CE inhibitor) without inhibiting cathepsin D (structurally similar to CE). The general applicability of this system suggests that it may be useful to identify inhibitory peptides for various kinds of proteases and that it may therefore contribute to protein science and drug discovery. The peptide binding to a protein is discussed in comparison with the antibody binding to an antigen.  相似文献   

16.
Human pathogenic gram‐negative bacteria, such as enteropathogenic Escherichia coli (EPEC), rely on type III secretion systems (T3SS) to translocate virulence factors directly into host cells. The coiled‐coil domains present in the structural proteins of T3SS are conformed by amphipathic alpha‐helical structures that play an important role in the protein‐protein interaction and are essential for the assembly of the translocation complex. To investigate the inhibitory capacity of these domains on the T3SS of EPEC, we synthesized peptides between 7 and 34 amino acids based on the coiled‐coil domains of proteins that make up this secretion system. This analysis was performed through in vitro hemolysis assays by assessing the reduction of T3SS‐dependent red blood cell lysis in the presence of the synthesized peptides. After confirming its inhibitory capacity, we performed molecular modeling assays using combined techniques, docking‐molecular dynamic simulations, and quantum‐mechanic calculations of the various peptide‐protein complexes, to improve the affinity of the peptides to the target proteins selected from T3SS. These techniques allowed us to demonstrate that the peptides with greater inhibitory activity, directed against the coiled‐coil domain of the C‐terminal region of EspA, present favorable hydrophobic and hydrogen bond molecular interactions. Particularly, the hydrogen bond component is responsible for the stabilization of the peptide‐protein complex. This study demonstrates that compounds targeting T3SS from pathogenic bacteria can indeed inhibit bacterial infection by presenting a higher specificity than broad‐spectrum antibiotics. In turn, these peptides could be taken as initial structures to design and synthesize new compounds that mimic their inhibitory pharmacophoric pattern.  相似文献   

17.
Multifunctional peptides encrypted in milk proteins   总被引:7,自引:0,他引:7  
Many bioactivities of milk are latent in that they are inactive within the protein sequence, requiring enzymatic proteolysis for release of bioactive peptides from milk proteins precursors. Bioactivities of peptides encrypted in major milk proteins are latent until released and activated, e.g. during gastrointestinal digestion or food processing. Bioactive peptides can be produced in vivo following intake of milk proteins, and the proteolytic system of bacterial species used in the production of fermented milk products and cheese can contribute to the liberation of bioactive peptides or precursors thereof. Activated peptides are potential modulators of various regulatory processes in the living system: immunomodulatory peptides stimulate the activities of cells of the immune system and several cytomodulatory peptides inhibit cancer cell growth, antimicrobial peptides kill sensitive microorganisms, angiotensin-I-converting enzyme (ACE)-inhibitory peptides exert an hypotensive effect, opioid peptides are opioid receptor ligands which can modulate absorption processes in the intestinal tract, mineral binding peptides may function as carriers for different minerals, especially calcium. Many milk-derived peptides reveal multifunctional properties, i.e. specific peptide sequences having two or more different biological activities have been reported. Milk protein-derived bioactive peptides are claimed to be health enhancing components that can be used to reduce the risk of disease or to enhance a certain physiological function.  相似文献   

18.
Seeds of Impatiens balsamina contain a set of related antimicrobial peptides (Ib-AMPs). We have produced a synthetic variant of Ib-AMP1, oxidized to the bicyclic native conformation, which was fully active on yeast and fungal strains; and four linear 20-mer Ib-AMP variants, including two all-D forms. We show that the all-D variants are as active on yeast and fungal strains as native peptides. In addition, fungal growth inhibition nor salt-dependency of Ib-AMP4 could be improved by more than two-fold via replacement of amino acid residues by arginine or tryptophan. Native Ib-AMPs showed no hemolytic nor toxic activity up to a concentration of 100 microM. All these data demonstrate the potential of the native Ib-AMPs to combat fungal infections.  相似文献   

19.
The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite-erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having alpha-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 microM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion.  相似文献   

20.
Calcium/calmodulin-dependent protein kinase II (CaMKII) catalyzes the phosphorylation of various cellular proteins and excessive activities have been implicated in the pathogenesis of various chronic diseases. We hypothesized that positively charged peptides can be produced through enzymatic hydrolysis of pea proteins; such peptides could then bind to negatively charged calmodulin (CaM) at a physiological pH level and inhibit CaMKII activity. Pea protein isolate was hydrolyzed with an alkaline protease (alcalase) and filtered through a 1000-mol wt cutoff membrane. The permeate, which contained low-molecular weight peptides, was used to isolate cationic peptides on an SP-Sepharose column by ion exchange chromatography. Separation of the permeate on the SP-Sepharose column yielded two fractions with net positive charges that were subsequently used for enzyme inhibition studies. Fraction I eluted earlier from the column and contained lower contents of lysine and arginine than Fraction II, which eluted later. Results show that both peptide fractions inhibited CaMKII activity mostly in a competitive manner, although kinetic data suggested that inhibition by Fraction II may be of the mixed type. Kinetic analysis (K(m) and K(i)) showed that affinity of peptides in Fraction II for CaM was more than that in Fraction I, which was directly correlated with the higher inhibitory properties of Fraction II against CaMKII. The results suggest that it may be possible to use pea protein-derived cationic peptides to modulate CaMKII activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号