首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Understanding physiological and behavioral mechanisms underlying the diversity of observed life-history strategies is challenging because of difficulties in obtaining long-term measures of fitness and in relating fitness to these mechanisms. We evaluated effects of experimentally elevated testosterone on male fitness in a population of dark-eyed juncos studied over nine breeding seasons using a demographic modeling approach. Elevated levels of testosterone decreased survival rates but increased success of producing extra-pair offspring. Higher overall fitness for testosterone-treated males was unexpected and led us to consider indirect effects of testosterone on offspring and females. Nest success was similar for testosterone-treated and control males, but testosterone-treated males produced smaller offspring, and smaller offspring had lower postfledging survival. Older, more experienced females preferred to mate with older males and realized higher reproductive success when they did so. Treatment of young males increased their ability to attract older females yet resulted in poor reproductive performance. The higher fitness of testosterone-treated males in the absence of a comparable natural phenotype suggests that the natural phenotype may be constrained. If this phenotype were to arise, the negative social effects on offspring and mates suggest that these effects might prevent high-testosterone phenotypes from spreading in the population.  相似文献   

2.
Social spiders are unusual among social organisms in being highly inbred-males and females mature within their natal nest and mate with each other to produce successive generations. Several lines of evidence suggest that in spiders inbred social species originated from outbred subsocial ancestors, a transition expected to have been hindered by inbreeding depression. As a window into this transition, we examined the fitness consequences of artificially imposed inbreeding in the naturally outbred subsocial spider Anelosimus cf. jucundus. Subsocial spiders alternate periods of solitary and social living and are thought to resemble the ancestral system from which the inbred social species originated. We found that inbreeding depression in this subsocial spider only becomes evident in spiders raised individually following the end of their social phase and that ecological and demographic factors such as eclosion date, number of siblings in the group and mother's persistence are more powerful determinants of fitness during the social phase. A potential explanation for this pattern is that maternal care and group living provide a buffer against inbreeding depression, a possibility that may help explain the repeated origin of inbred social systems in spiders and shed light on the origin of other systems involving regular inbreeding.  相似文献   

3.
Many bird species demonstrate a variable mating system, with some males being monogamously mated and other males able to attract more than one mate. This variation in avian mating systems is often explained in terms of potential costs of sharing breeding partners and compensation for such costs. However, whenever there is a difference in the optimal mating system for males and females, a sexual conflict over the number of partners is expected. This paper contains a verbal model of how a conflict between male and female European starlings (Sturnus vulgaris),resulting from the fitness consequences of different mating systems for males and females differing over time, determines the mating system. We demonstrate that males and females have contrasting fitness interests regarding mating system, such that males gain from attracting additional mates whereas already mated females pay a cost in terms of reduced reproductive success if males are successful in attracting more mates. We demonstrate how this can be traced to the rules by which males allocate non-sharable care between different broods. Furthermore, we demonstrate that there exist male and female conflict behaviours with the potential to affect the mating system. For example, aggression from already mated females towards prospecting females can limit male mating success and males can circumvent this by spacing the nest-sites they defend. The realised mating system will emerge as a consequence of both the fitness value of the different mating systems for males and females, and the costs for males and females of intersexual competition. We discuss how this model can be developed and critically evaluated in the future.  相似文献   

4.
Group fission in non-human primates has long been proposed to result from interactions between ecological and social factors. Several studies have documented possible causes for group fission, but its proximate causes and ultimate adaptive values are not yet fully understood. We have examined the existing hypotheses on fission from long-term demographic data of Formosan macaques inhabiting the lowland rainforest at Mt Longevity, Taiwan. Five cases of fission occurred in four social groups. We have recorded two types of fission: one involving the separation of a high-ranking adult male and multiple adult females, the other initiated by adult females from main groups. Five adult females immigrated and emigrated a few times between the main and branch groups (oscillation) in three fission events. Data presented in this study are consistent with the prediction that low-ranking females split from main groups when their fitness costs increase due to ecological pressure or population growth. However, their reproductive success may decrease after fission due to a high rate of intra-group competition. Nevertheless, it is beneficial for males to be involved in fission since this increases reproductive benefits by decreasing the sex ratio in small newly formed groups.  相似文献   

5.
Conflicts between the sexes over control of reproduction are thought to lead to a cost of sexual selection through the evolution of male traits that manipulate female reproductive physiology and behaviour, and female traits that resist this manipulation. Although studies have begun to document negative fitness effects of sexual conflict, studies showing the expected association between sexual conflict and the specific behavioural mechanisms of sexual selection are lacking. Here we experimentally manipulated the opportunity for sexual conflict in the cockroach. Nauphoeta cinerea and showed that, for this species, odour cues in the social environment influence the behavioural strategies and fitness of males and females during sexual selection. Females provided with the opportunity for discriminating between males but not necessarily mating with preferred males produced fewer male offspring than females mated at random. The number of female offspring produced was not affected, nor was the viability of the offspring. Experimental modification of the composition of the males' pheromone showed that the fecundity effects were caused by exposure to the pheromone component that makes males attractive to females but also makes males less likely to be dominant. Female mate choice therefore carries a demographic cost but functions to avoid male manipulation and aggression. Male-male competition appears to function to circumvent mate choice rather than directly manipulating females, as the mate choice can be cryptic. The dynamic struggle between the sexes for control of mating opportunities and outcomes in N. cinerea therefore reveals a unique role for sexual conflict in the evolution of the behavioural components of sexual selection.  相似文献   

6.
Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.  相似文献   

7.
Uzi Nur 《Chromosoma》1969,28(3):280-297
The B-chromosomes (B's; supernumeraries) of the mealy bug, Pseudococcus obscurus Essig, segregate preferentially into the two functional products of male meiosis. This segregation thus serves as an accumulation mechanism. A cytological study of a population from Oakland, California, confirmed the results obtained earlier that the B's are harmful and are maintained only because of their accumulation mechanism. The wild females were studied directly. The number of B's in the males was determined by analyzing ten or more daughters of females without B's (0B females) after these were inseminated by wild males. The 0B females were exposed to the wild males in screen cages. The analysis of 4732 daughters of 231 caged females indicated that among the males which inseminated these females, there were 19.9% 0B males and the mean number of B's was 1.46 ± 0.07. Among 224 wild females which were collected at about the same time there were 12.5% 0B females, and the mean number of B's was 1.88 ± 0.09. Since the frequencies of the B's in the population changed only slightly from generation to generation, the expected zygotes of this generation were assumed to be similar to those from which both the males and the females developed. The expected zygotes were calculated from the observed frequencies of the B's among the sperm and the known rates of transmission in females. The zygotes were very similar to the females but quite different from the males. It was concluded, therefore, that the B's had little or no effect on the females carrying them, but reduced the fitness of the males. The fitness of the 0B, 1B, 2B, 3B and 4B males was calculated to be 1.00, 0.64, 0.56, 0.38 and 0.20 respectively. The rate of transmission of the B's decreased with the increase in the number of B's, from 0.84 in 1B males to 0.51 in 4B males. This decrease, and the decrease in male fitness with the increase in the number of B's are expected to help stabilize the number of B's in the population.This paper is dedicated to Professor Sally Hughes-Schrader on the occasion of her seventy-fifth birthday.Supported by grants GB 1585 and GB 6745 from the National Science Foundation, Washington, D. C.  相似文献   

8.
We tested two hypotheses to explain the occurrence of polygynyin a box-nesting population of the house wren (Troglodytes aedon),a small, insectivorous songbird. Some proportion of femalesin this population routinely settle with already-mated maleseven though unmated males hold territories relatively shortdistances away. The "polygyny-threshold" hypothesis proposesthat mated males possess territorial resources that compensatefemales for the cost of mate sharing (i.e., reduced aid in feedingyoung). Contrary to a key prediction of this hypothesis, however,we found that secondary females produced fewer offspring thanfemales who chose nearby unmated males. The "sexy son" hypothesisproposes that mated males father attractive, prolific sons,which results in secondary females obtaining as many grandoffspringas expected had they chosen available unmated males. Our datasuggest that if male mating success is at least moderately heritable,secondary females may produce enough fledglings per breedingattempt relative to their monogamously mating counterparts torecoup fitness losses in the next generation. However, fullacceptance of this hypothesis must await confirmation that malemating success is heritable. We suggest a third hypothesisfor why females readily mate polygynously when better, monogamousbreeding options are clearly available. We argue that femalesmay choose mated males because these males possess highquality nest sites (i.e., nest-boxes), and that access to such nestsites would provide females with sufficient compensation forthe costs of polygyny under normal conditions when all availableunmated males would have poorer-quality, natural nest sites.This "expected compensation" hypothesis assumes that polygynouslymating females terminate mate search before they discover thatavailable unmated males also possess nestboxes. A recent theoreticalexploration of mate search strategy suggests that this assumptionis reasonable.  相似文献   

9.
Interlocus sexual conflict theory predicts that some male adaptations are harmful to their mates. Females are therefore expected to evolve resistance to this harm. Using cytogenetic cloning techniques, we tested for heritable genetic variation among females for resistance to harm from males and determined whether propensity to remate, female body size, and intralocus conflict contributes to this variation. We found low but significant heritability for female resistance, but this variation accounted for more than half of the standing genetic variation for net fitness among females. We found no association between female resistance and female body size or level of intralocus sexual conflict. Reluctance to remate was found to be an important factor contributing to the female resistance phenotype, and we found a positive selection gradient on this trait. However, we observed only a nonsignificant positive correlation between a female's resistance and her net fitness. One factor contributing to the observed nominal level of selection on female resistance was that males cause the greatest amount of harm to females with the highest intrinsic fecundity.  相似文献   

10.
The magnitude of inbreeding depression is often larger in traits closely related to fitness, such as survival and fecundity, compared to morphological traits. Reproductive behaviour is also closely associated with fitness, and therefore expected to show strong inbreeding depression. Despite this, little is known about how reproductive behaviour is affected by inbreeding. Here we show that one generation of full‐sib mating results in a decrease in male reproductive performance in the least killifish (Heterandria formosa). Inbred males performed less gonopodial thrusts and thrust attempts than outbred males (δ = 0.38). We show that this behaviour is closely linked with fitness as gonopodial performance correlates with paternity success. Other traits that show inbreeding depression are offspring viability (δ = 0.06) and maturation time of males (δ = 0.19) and females (δ = 0.14). Outbred matings produced a female biased sex ratio whereas inbred matings produced an even sex ratio.  相似文献   

11.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

12.
We analyzed the long-term effects of postovulatory aging of mouse oocytes on reproductive fitness and longevity of offspring. Hybrid (C57BL/6JIco x CBA/JIco) parental generation (F0) females were artificially inseminated at 13 h (approximately 1 h postovulation) or 22 h (approximately 10 h postovulation) after GnRH injection. Reproductive fitness of first generation (F1) females was tested from the age of 28 wk until the end of their reproductive life. In males, the testing period ranged from the age of 2 yr until their natural death. Experimental F1 females exhibited longer between-labor intervals, decreased frequency of litters, and lower total number of litters and offspring born. Experimental second generation (F2) pups displayed teratogenic defects, higher preweaning mortality, and decreased body weight at weaning. Incidence of infertility was higher in experimental F1 males, which translated into lower total number of offspring born when compared with the control group. Life expectancy of F1 offspring was decreased in the experimental group. These results clearly show that postovulatory aging of mouse oocytes decreases reproductive fitness and longevity of offspring.  相似文献   

13.
Explaining the evolution of multiple mating is a challenge because of the associated costs. For social insects, mating frequency may have fitness consequences due to effects on social interactions or genetic diversity within colonies. Here, we investigated the evolution of mating frequency in a social insect species with a unique genetic system that requires multiple mating. In certain populations of Pogonomyrmex harvester ants, there are two interbreeding yet genetically distinct mitochondrial lineages. Queens must mate with males of the opposite lineage to produce workers and with males of the same lineage to produce reproductive females. We expected queens of the dependent-lineage system to exhibit high mating frequencies relative to other social insects. Furthermore, we expected queens from populations of highly asymmetric lineage ratios to exhibit even higher mating frequencies, to adequately sample the population and successfully mate with males of the less common lineage. To test these predictions, we estimated the mating frequency of 16 P. barbatus queens, and compared these mating frequencies between two populations, one with relatively equal lineage ratio (60:40) and a second with a highly asymmetrical lineage ratio (96:4). Overall, observed mating frequency exceeded 10, which is high in comparison to other social insects, and our estimates of effective mating frequency were among the highest of Pogonomyrmex species. Mating frequency at the site with the asymmetrical lineage ratio was also significantly higher than the site with the more even ratio. Our results suggest that obligate multiple mating as well as lineage ratio contribute to the evolution of high mating frequency in dependent-lineage populations.  相似文献   

14.
Female mate choice is thought to be responsible for the evolution of many extravagant male ornaments and displays, but the costs of being too selective may hinder the evolution of choosiness. Selection against choosiness may be particularly strong in socially monogamous mating systems, because females may end up without a partner and forego reproduction, especially when many females prefer the same few partners (frequency-dependent selection). Here, we quantify the fitness costs of having mating preferences that are difficult to satisfy, by manipulating the availability of preferred males. We capitalize on the recent discovery that female zebra finches (Taeniopygia guttata) prefer males of familiar song dialect. We measured female fitness in captive breeding colonies in which one-third of females were given ample opportunity to choose a mate of their preferred dialect (two-thirds of all males; “relaxed competition”), while two-thirds of the females had to compete over a limited pool of mates they preferred (one-third of all males; “high competition”). As expected, social pairings were strongly assortative with regard to song dialect. In the high-competition group, 26% of the females remained unpaired, yet they still obtained relatively high fitness by using brood parasitism as an alternative reproductive tactic. Another 31% of high-competition females paired disassortatively for song dialect. These females showed increased levels of extra-pair paternity, mostly with same-dialect males as sires, suggesting that preferences were not abolished after social pairing. However, females that paired disassortatively for song dialect did not have lower reproductive success. Overall, females in the high-competition group reached equal fitness to those that experienced relaxed competition. Our study suggests that alternative reproductive tactics such as egg dumping can help overcome the frequency-dependent costs of being selective in a monogamous mating system, thereby facilitating the evolution of female choosiness.

Being highly selective in partner choice may be problematic, because widely preferred mates are rapidly claimed. However, this study of the socially monogamous zebra finch reveals that females have evolved effective ways of coping with this situation.  相似文献   

15.
In many species, intense male-male competition for the opportunity to sire offspring has led to the evolution of selfish reproductive traits that are harmful to the females they mate with. In the fruit fly, Drosophila melanogaster, males modulate their reproductive behavior based on the perceived intensity of competition in their premating environment. Specifically, males housed with other males subsequently transfer a larger ejaculate during a longer mating compared to males housed alone. Although the potential fitness benefits to males from such plasticity are clear, its effects on females are mostly unknown. Hence, we tested the long-term consequences to females from mating with males with distinct social experiences. First, we verified that competitive experience influences male mating behavior and found that males housed with rivals subsequently have shorter mating latencies and longer mating durations. Then, we exposed females every other day for 20 days to males that were either housed alone or with rivals, and subsequently measured their fitness. We found that females mated to males housed with rivals produce more offspring early in life but fewer offspring later in life and have shorter lifespans but similar intrinsic population growth rates. These results indicate that plasticity in male mating behavior can influence female life histories by altering females’ relative allocation to early versus late investment in reproduction and survival.  相似文献   

16.
We present evidence that in the absence of the transfer of male gland compounds in the ejaculate as well as of behavioural male traits, such as mate guarding or harming of females, sperm itself affects female life-history traits such as hibernation success, female longevity and female fitness. Using the bumble-bee Bombus terrestris, we artificially inseminated queens (females) with sperm from one or several males and show that sire groups (groups of brother males) vary in their effects on queen hibernation survival, longevity and fitness. In addition, multiply inseminated queens always had a lower performance as compared to singly inseminated queens. Apart from these main effects, sire groups (in situations of multiple insemination) affected queen longevity and fitness not independently of each other, i.e. certain sire group combinations were more harmful to queens than others. So far, the cause(s) of these effects remain(s) elusive. Harmful male traits as detected here are not necessarily expected to evolve in social insects because males depend on females for a successful completion of a colony cycle and thus have strong convergent interests with their mates.  相似文献   

17.
Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.  相似文献   

18.
Females in many species engage in matings with males that are not their social mates. These matings are predicted to increase offspring heterozygosity and fitness, and thereby prevent the deleterious effects of inbreeding. We tested this hypothesis in a cooperative breeding mammal, the common mole-rat Cryptomys hottentotus hottentotus. Laboratory-based studies suggested a system of strict social monogamy, while recent molecular studies indicate extensive extra-pair paternity despite colonies being founded by an outbred pair. Our data show that extra-pair and within-colony breeding males differed significantly in relatedness to breeding females, suggesting that females may gain genetic benefits from breeding with non-resident males. Extra-colony male mating success was not based on heterozygosity criteria at microsatellite loci; however, litters sired by extra-colony males exhibited increased heterozygosity. While we do not have the data that refute a relationship between individual levels of inbreeding (Hs) and fitness, we propose that a combination of both male and female factors most likely explain the adaptive significance of extra-pair mating whereby common mole-rats maximize offspring fitness by detecting genetic compatibility with extra-pair mates at other key loci, but it is not known which sex controls these matings.  相似文献   

19.
In social species with low rates of direct male competition levels of corticosteroids should not correlate with social status. Male spotted hyenas acquire social status by observing strict queuing conventions over many years, and thus levels of male-male aggression are low, and male social status and tenure are closely correlated. In this study, we investigated whether the low rate of direct male competition in spotted hyenas was reflected in fecal corticosteroid levels of adult males in the Serengeti National Park. Also, interactions with dominant females may influence corticosteroid levels of males, and it has been suggested recently that males with a long tenure (high rank) are more stressed by females than males with a short tenure (low rank). We tested whether there is a difference in the likelihood of being aggressively challenged by dominant females between long-tenured and short-tenured males. Short-tenured males were more likely to elicit an aggressive response by females than long-tenured males, but previous work suggests that they also interacted less frequently with females, thus avoiding putting themselves in a potentially stressful situation. Thus, as expected, the comparison of males in three different clans revealed no correlation between social status or tenure and fecal corticosteroid levels. However, males of the largest clan had the highest levels of fecal corticosteroids, possibly reflecting higher rates of social interactions in larger clans.  相似文献   

20.
The aggression animals receive from conspecifics varies between individuals across their lifetime. As poignantly evidenced by infanticide, for example, aggression can have dramatic fitness consequences. Nevertheless, we understand little about the sources of variation in received aggression, particularly in females. Using a female-dominant species renowned for aggressivity in both sexes, we tested for potential social, demographic, and genetic patterns in the frequency with which animals were wounded by conspecifics. Our study included 243 captive, ring-tailed lemurs (Lemur catta), followed from infancy to adulthood over a 35-year time span. We extracted injury, social, and life-history information from colony records and calculated neutral heterozygosity for a subset of animals, as an estimate of genetic diversity. Focusing on victims rather than aggressors, we used General Linear Models to explain bite-wound patterns at different life stages. In infancy, maternal age best predicted wounds received, as infants born to young mothers were the most frequent infanticide victims. In adulthood, sex best predicted wounds received, as males were three times more likely than females to be seriously injured. No relation emerged between wounds received and the other variables studied. Beyond the generally expected costs of adult male intrasexual aggression, we suggest possible additive costs associated with female-dominant societies – those suffered by young mothers engaged in aggressive disputes and those suffered by adult males aggressively targeted by both sexes. We propose that infanticide in lemurs may be a costly by-product of aggressively mediated, female social dominance. Accordingly, the benefits of female behavioral ‘masculinization’ accrued to females through priority of access to resources, may be partially offset by early costs in reproductive success. Understanding the factors that influence lifetime patterns of conspecific wounding is critical to evaluating the fitness costs associated with social living; however, these costs may vary substantially between societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号