首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The egg jelly (EJ) coat which surrounds the unfertilized sea urchin egg undergoes extensive swelling upon contact with sea water, forming a threedimensional network of interconnected fibers extending nearly 50 μm from the egg surface. Owing to its solubility, this coat has been difficult to visualize by light and electron microscopy. However, Lytechinus pictus EJ coats remain intact, if the fixation medium is maintained at pH 9. The addition of alcian blue during the final dehydration step of sample preparation stains the EJ for visualization of resin embedded eggs by both light and electron microscopy. Stereo pairs taken of thick sections prepared for intermediate voltage electron microscopy (IVEM) produce a threedimensional image of the EJ network, consisting of interconnected fibers decorated along their length by globular jelly components. Using scanning electron microscopy (SEM), we have shown that before swelling, EJ exists in a tightly bound network of jelly fibers, 50–60 nm in diameter. In contrast, swollen EJ consists of a greatly extended network whose fibrous components measure 10 to 30 nm in diameter. High resolution stereo images of hydrated jelly produced by the quick-freeze/deep-etch/rotary-shadowing technique (QF/DE/RS) show nearly identical EJ networks, suggesting that dehydration does not markedly alter the structure of this extracellular matrix. © 1993 Wiley-Liss, Inc.  相似文献   

2.
We studied the glycopatterns and ultrastructure of the extra-cellular matrix (ECM) of the egg of the Apennine yellow-bellied toad Bombina pachypus, by light and electron microscopy in order to determine structure, chemical composition and function. Histochemical techniques in light microscopy included PAS and Alcian Blue pH 2.5 and 1.0, performed also after β-elimination. Lectin-binding was tested with nine lectins (AAA, ConA, DBA, HPA, LTA, PNA, SBA, UEA-I, WGA). An inner fertilization envelope (FE) and five jelly layers (J1-J5) were observed, differing in histochemical staining, lectin binding and ultrastructure. Most glycans were O-linked, with many glucosamylated and fucosylated residues. The fertilization envelope presented a perivitelline space and a fertilization layer, with mostly neutral glycans. The jelly layers consisted of fibers and granules, whose number and orientation differed between layers. Fibers were densely packed in J(1) and J(4) layers, whereas a looser arrangement was observed in the other layers. Jelly-layer glycans were mostly acidic and particularly abundant in the J(1) and J(4) layers. In the J(1), J(2) and J(5) layers, neutral, N-linked glycans were also observed. Mannosylated and/or glucosylated as well as galactosyl/galactosaminylated residues were more abundant in the outer layers. Many microorganisms were observed in the J(5) layer. We believe that, apart from their functions in the fertilization process, acidic and fucosylated glycans could act as a barrier against pathogen penetration.  相似文献   

3.
Eggs of the amphibian, Xenopus laevis, were quick-frozen, deep-etched, and rotary-shadowed. The structure of the extracellular matrix surrounding these eggs, including the perivitelline space and the vitelline envelope (VE), was visualized in platinum replicas by electron microscopy. The perivitelline space contains an elaborate filamentous glycocalyx which connects microvillar tips to the plasma membrane, to adjacent microvilli, and to the overlying VE. The VE is comprised of two layers, the innermost of which is a thin network of horizontal fibrils lying on the tips of the microvilli. The outermost is a thicker layer of large, cable-like fibers which twist and turn throughout the envelope. Upon fertilization, three dramatic modifications of the matrix occur. A thin sheet of smooth material, termed the smooth layer, is deposited on the tips of the microvilli and separates the egg from the overlying envelopes. The VE above is transformed from a thick band of cable-like fibers to concentric fibrous sheets, the altered VE. Finally, an ornate band of particles, corresponding to the fertilization layer in previous studies, is deposited at the altered VE/jelly interface. The altered VE and the fertilization layer comprise the fertilization envelope, which effects the structural block to polyspermy.  相似文献   

4.
The cell of Pyrocystis spp. is covered by an outer layer of material resistant to strong acids and bases. Internal to this layer much of the cell wall is composed of cellulose fibrils. The presence of cellulose fibrils was established by staining raw and ultra-violet–peroxide-cleaned cell walls and by combining X-ray diffraction spectroscopy with electron microscope observation. Carbon replicas of freeze-etched preparations and thin sections of P. lunula walls show outer layers, inside them ca. 24 layers of crossed parallel cellulose fibrils (4–5 nm thick, ca. 12 nm wide), then a region of smaller (ca. 6–12 nm diameter) fibrils in a disperse texture, and then the plasma membrane. Cellulose fibrils in the parallel texture are constructed of 3–5 elementary fibrils ca. 3 nm in diameter. Walls of P. fusiformis and P. pseudonctiluca also have cellulose fibrils in a crossed parallel texture similar to those of P. lunula. The Gymnodinium-type swarmer from lunate P. lunula appears to have a cell wall ultrastructure typical of other “naked” dinoflagellates.  相似文献   

5.
Ultrastructure of the cell wall of a Synechocystis strain   总被引:2,自引:0,他引:2  
The ultrastructure of the cell wall of a Synechocystis strain, isolated from the Gulf of Finland, was studied using several electron microscopic techniques. This cyanobacterium has numerous projections which were observed to penetrate the cell wall complex. An additional layer (AL) was associated with the outer membrane. An additional external wall layer (EL) was connected to the outer membrane complex by thin fibers as revealed by ruthenium red staining. A hexagonal arrangement of the subunits in the additional external wall layer with a lattice constant of 15.5 nm was found.  相似文献   

6.
In free-spawning marine invertebrates, the amount of maternal energy that is invested in each egg has profound implications for all life-history stages of the offspring. The eggs of echinoids are freely spawned into the water and are surrounded by several structurally complex extracellular layers. These extracellular layers, or jelly coats, do not contribute energy to embryonic development but must impose an energy cost on the production of each egg. The investment of maternal energy reserves in the jelly coats of echinoid eggs may have important implications for the number of eggs that can be produced (i.e., fecundity) and the amount of energy that can be invested in each egg. We estimated the degree to which maternal energy is invested in the jelly coats surrounding eggs of the echinoid Arbacia punctulata. Estimates were derived from measurements of the amount of energy contained in the combined eggs and jelly coats, and in the eggs alone. The amount of energy contained in A. punctulata eggs ranged from 2.70 to 5.53 x 10(-4) J egg(-1). The amount of energy contained in the jelly coats ranged from 0.13 to 0.48 x 10(-4) J jelly coat(-1). The mean concentration of energy in the eggs was 2.15 mm(-3) and 0.29 J mm(-3) in the jelly coats. These results indicate that between 3% and 11% (mean = 7%) of the total energy invested in each A. punctulata egg is partitioned to the jelly coat alone. A significant positive relationship was found between the volumes of the jelly coats and the amount of energy they contained. Based on this relationship and an analysis of differences in the size of jelly coats between echinoid species, we suggest that the degree to which energy is invested in jelly coats may vary among echinoid species and is therefore likely to be an important life-history characteristic of these organisms.  相似文献   

7.
Electron microscopy examinations of thin sections and freeze-fracture replicas revealed the specific ultrastructural features of Alicyclobacillus tolerans strain K1(T). In particular, the cell wall displayed an ultrastructure typical of gram-positive bacteria and consisted of a thin murein layer (50-60 A in thickness); cells exhibited a surface S-layer constituted by large hexagonally packed (p6-symmetry) rod-shaped subunits of 150-160 A in diameter and 200 A in height. In the cytoplasmic membrane, there were intramembrane vesicular structures that sometimes appeared as large leaflets in the central part. The cytoplasm contained numerous vesicular inclusions covered with a monolayered wall, dissimilar to bilamellar lipid membranes. Endospore coats displayed an intricate structure and consisted of three thick layers; the outer layer had an unusual fine structure; the exosporium was also found.  相似文献   

8.
T. Fujino  T. Itoh 《Protoplasma》1994,180(1-2):39-48
Summary The cell wall of a green alga,Oocystis apiculata, was visualized by electron microscopy after preparation of samples by rapid-freezing and deep-etching techniques. The extracellular spaces clearly showed a random network of dense fibrils of approximately 6.4 nm in diameter. The cell wall was composed of three distinct layers: an outer layer with a smooth appearance and many protuberances on its outermost surface; a middle layer with criss-crossed cellulose microfibrils of approximately 15–17 nm in diameter; and an inner layer with many pores between anastomosing fibers of 8–10 nm in diameter. Both the outer and the inner layer seemed to be composed of amorphous material. Cross-bridges of approximately 4.2 nm in diameter were visualized between adjacent microfibrils by the same techniques. The cross-bridges were easily distinguished from cellulose microfibrils by differences in their dimensions.  相似文献   

9.
The vitelline coat (VC) glycoproteins of the Unio elongatulus egg, purified as previously described (Focarelli and Rosati, 1993: Mol Reprod Dev 35:44–51) and indicated as gp220 and gp180 by virtue of their apparent molecular weights in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The analysis confirmed the purity of our preparations and the mass of gp180, but gave a mass of 273,000 for gp220. Intact VCs and purified VC components were then visualized in stereo images of platinum replicas produced by the quick-freeze, deep-etch, and rotary shadowing techniques: gp180 revealed a c-like shape and gp273 a rosette-like shape. The intact VCs were found to consist of two layers, the internal one clearly fibrous and the external one compact. Since purified preparations of gp180 spontaneously formed fibrils of similar width to those present in the inner VC layer, this layer presumably consists mainly of this component. The prevalence of gp273 in the outer layer is also suggested and discussed. Mol. Reprod. Dev. 48:511–517, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The ultrastructure of sperm changes and penetration in the egg was studied in the anuran Discoglossus pictus, whose sperm have an acrosome cap with a typical tip, the apical rod. The first stage of the sperm apical rod and acrosome reaction (AR) consists in vesiculation between the plasma membrane and the outer acrosome membrane. The two components of the acrosome cap are released in sequence. The innermost component (component B) is dispersed first. The next acrosome change is the dispersal of the outermost acrosome content (component A). At 30 sec postinsemination, when the loss of component B is first observed, holes are seen in the innermost jelly coat (J1), surrounding the penetrating sperm. Therefore, this acrosome constituent might be related to penetration through the innermost egg investments. At 1 min postinsemination, during sperm penetration into the egg, a halo of finely granular material is observed around the inner acrosome membrane of the spermatozoon, suggesting a role for component A at this stage of penetration. Gamete-binding and fusion take place between D1 (the egg-specific site for sperm interaction) and the perpendicularly oriented sperm. Spermatozoa visualized at their initial interaction (15 sec postinsemination) with the oolemma are undergoing vesiculation. The first interaction is likely to occur between the D1 glycocalyx and the plasma membrane of the hybrid vesicles surrounding the apical rod. As fusion is observed between the internal acrosome membrane and the oolemma, it can be postulated that gametic interaction might be followed by fusion of the latter with the apical rod internal membrane that extends posteriorly into the inner acrosome membrane. Insemination of the outermost jelly layer (J3) dissected out of the egg, and observations of the ultrastructural changes of spermatozoa in this coat, indicate that J3 rather than the vitelline coat (VC) induces the AR. Interestingly, at the late postinsemination stage, VC fibrils are seen crosslinking the inner acrosome membrane. The role of this binding is here discussed. Mol. Reprod. Dev. 47:323–333, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The morphological distribution of oligosaccharides is determined in the egg jelly surrounding Xenopus laevis eggs. This biological system is used to illustrate a method for readily identifying and quantifying oligosaccharides in specific tissues. The extracellular matrix surrounding X. laevis eggs consists of a vitelline envelope and a jelly coat. The jelly coat contains three morphologically distinct layers designated J1, J2, and J3 from the innermost to the outermost and is composed of 9-11 distinct glycoproteins. Each jelly layer is known to have specific functions in the fertilization of the egg. We developed a rapid method to separate and identify the oligosaccharides from X. laevis egg jelly layers. Identification was based on the retention times in high-performance liquid chromatography (porous graphitized carbon column), exact masses, and tandem mass spectrometry. Over 40 neutral and 30 sulfated oligosaccharides were observed in the three jelly layers. Neutral oligosaccharide structures from different jelly layers were both unique and overlapping, while sulfated oligosaccharides were detected only in layers J1 and J2. Neutral oligosaccharides unique to jelly layer J3 and the combined layers J1+J2 had similar core structures and similar residues. However, differences between these two sets of unique oligosaccharides were also observed and were primarily due to the branching carbohydrate moieties rather than the core structures.  相似文献   

12.
Nuclear envelope-limited chromatin sheets (ELCS) form during excessive interphase nuclear envelope growth in a variety of cells. ELCS appear as extended sheets within the cytoplasm connecting distant nuclear lobes. Cross-section stained images of ELCS, viewed by transmission electron microscopy, resemble a sandwich of apposed nuclear envelopes separated by ~30 nm, containing a layer of parallel chromatin fibers. In this study, the ultrastructure of ELCS was compared by three different methods: (1) aldehyde fixation/dehydration/plastic embedding/sectioning and staining, (2) high-pressure freezing/freeze substitution into plastic/sectioning and staining, and (3) high-pressure freezing/cryo-sectioning/cryo-electron microscopy. ELCS could be clearly visualized by all three methods and, consequently, must exist in vivo and are not fixation artifacts. The ~30-nm chromatin fibers could only be observed following aldehyde fixation; none were seen in cryo-sections. Electron microscopic tomography tangential views of aldehyde-fixed ELCS suggested an ordering of the separate chromatin fibers adjacent to the nuclear envelope. Possible mechanisms of this chromatin ordering are discussed.  相似文献   

13.
Synopsis Sturgeon gametes differ from those of most fish in that the sperm possess acrosomes that undergo exocytosis and filament formation while the eggs possess numerous micropyles. Acipenser transmontanus eggs are encased by multilayered envelopes that consist of outer adhesive jelly coats and three structured layers interior to the jelly. The glycoprotein jelly layer only becomes adhesive upon exposure to freshwater. The layer interior to the jelly, layer 3, is the other carbohydrate-containing component of the egg envelope. This layer consists of a water-insoluble glycoprotein that, upon freshwater exposure, is hydrolyzed by a trypsinlike protease to yield a water-soluble, lower molecular weight carbohydrate-containing component. This component can be identified in the surrounding medium when unfertilized eggs are incubated in freshwater. This egg water component elicits acrosome reactions only in homologous sperm. The A. transmontanus sperm acrosome reaction is a Ca++ and/or Mg++ dependent event that includes the formation of a 10 μ long fertilization filament. A. transmontanus fertilization can occur at low sperm per egg ratios; however, crossfertilization of A. transmontanus eggs with lake sturgeon, A. fluvescens, sperm results in a very low number of fertilized eggs, even at high sperm per egg ratios. The morphological, physiological, and biochemical phenomenon reviewed in this paper are related to the environment in which they occur. Also, the possible role of the acrosome and the presence of numerous micropyles are discussed.  相似文献   

14.
Cocoons of Theridiosoma gemmosum consist of two main parts, the egg sac case and the stalk. The inner space of the egg sac case is filled with nonsticky flocculent silk. Measuring 600–800 nm in diameter, the flocculent threads are never made up of bundles of longitudinally oriented nanofibrils. The egg case wall consists of a lower layer of highly ordered threads and an upper layer of cover silk. The lower, permanently white layer consists of threads in a mesh‐like arrangement, the thicker threads being 4–6 μm and the thinner threads being 2–3 μm in diameter. Each thread is a bundle of parallel nanofibrils, with a diameter between 150 and 300 nm. The silk secretions of these fibers, emitted from spigots, are processed by legs. The upper layer of the egg case is applied to the threads of the lower layer by direct rubbing against its surface, i.e. without the use of legs. In the lower and middle part of the egg case, the accumulated secretion forms a virtually compact encrustation, whereas in the upper, conically shaped, part of the egg case where it becomes the stalk, this secretion becomes substantially scarcer. The stalk is a continuation of the egg case, its proximal part made of fibers similar to those forming the inner layer of the egg case wall. The distal part of the stalk continues towards the suspension area either as a compact bundle of parallel fibers, or the stalk forks into two bundles of roughly the same thickness, which continue towards the suspension area separately. On the surface of objects onto which cocoons are attached, the secretion of the piriform glands acts as an adhesive sheet. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
采用透射电镜和细胞化学技术对红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)的孢子发育过程进行了研究,根据超微结构和细胞化学特征可将其孢子发育过程分为3个阶段:(1)孢子母细胞及其减数分裂阶段:孢子母细胞壳在孢原细胞末期开始形成,位于孢子母细胞及其减数分裂形成的四分体外侧,PAS反应显示其为多糖性质,与胼胝质壁为同功结构;在减数分裂形成的四分孢子之间产生孢子外壳,从功能、形成位置和时间上看与胼胝质壁相似,但苏丹黑B反应显示其可能含有脂类物质,与孢子母细胞壳和胼胝质壁不同。(2)孢子外壁形成阶段:外壁为乌毛蕨型(Blechnoidal-type),由薄的多糖性质的外壁内层和表面平滑的孢粉素外壁外层构成;小球参与外壁外层的形成,组织化学分析显示小球的中央区域和外壁外层内侧部分由红色(多糖)变为黄色,小球的表面区域和外壁外层部分始终被染成黑色(脂类),可知小球与外壁同步发育。(3)孢子周壁形成阶段:周壁为凹陷型(Cavate-type),包括2层,内层薄,紧贴外壁,外层隆起形成孢子脊状褶皱纹饰的轮廓,以少见的向心方向发育;苏丹黑B和PAS反应观察周壁被染成橙色,推测其可能由多糖等成分构成;孢子囊壁细胞参与周壁的形成。本研究为揭示蕨类植物孢子发生的细胞学机制提供了新资料。  相似文献   

16.
The notochord and notochordal sheath of 10 adult amphioxus were investigated ultrastructurally and histochemically. The notochord in amphioxus consists of parallel notochordal cells (plates) and each plate consists of parallel thicker and thinner fibrils and numerous profiles of smooth endoplasmic reticulum situated just beneath the cell membrane. Histochemical staining shows that the notochordal plates resemble neither the connective tissue notochordal sheath nor the typical muscular structure myotomes. The notochordal sheath has a complex three-layered organization with the outer, middle and inner layer The outer and middle layer are composed of collagen fibers of different thickness and course, that correspond to collagen type I and collagen type III in vertebrates, respectively, and the inner layer is amorphous, resembles basal lamina, and is closely attached to the notochord by hemidesmosome junctions. These results confirm the presence of collagen fibers and absence of elastic fibers in amphioxus.  相似文献   

17.
Cleavage-stage embryos of the neotenic urodele Ambystoma mexicanum are surrounded by a fertilization envelope and four macroscopic jelly coats termed J1 (innermost) through J4 (outermost). In sections prepared for light microscopy, each of the jelly layers stained with protein stains and the periodic acid-Schiff's reagent, but only J1 stained with alcian blue at pH 2.5. These results suggest that each layer consists of proteins and glycoproteins and that J1 uniquely contains some sulfate esters. Only J4 was solubilized with alkaline mercaptan treatment in situ , however, the isolated inner jelly complex (J1, J2 and J3) was easily dissolved in this reagent suggesting that solvent access is impaired in situ . A single alcian blue-staining component plus one protein-staining component were detected on reducing polyacrylamide gel electrophoresis of outer jelly (J4). In the inner jelly complex (J1, J2, J3), two protein-staining components were detected and no alcian blue-staining components were observed. A predominant polypeptide of 110,000 molecular weight was detected and purified to homogeneity on reducing and denaturing gels of the inner jelly complex. Amino acid analysis of the polypeptide demonstrated a slightly higher fraction of acidic over basic amino acids (Glx+Asx=18.1 mole% vs . Arg + Lys = 11.7 mole%). The N-terminal amino acid was Glu and the sequence of the first eleven amino acids was determined.  相似文献   

18.
Superpacking of chromatin and the surface features of metaphase chromosomes have been studied by SiO replication of wet, unstained, and unfixed specimens in an exceedingly thin (≤ 1 nm) aqueous layer, keeping them wet. Hydrophilic Formvar substrates allow controlled thinning of the aqueous layer covering the wet specimens. Whole mounts of chromatin and chromosomes were prepared by applying a microsurface spreading method to swollen nuclei and mitotic cells at metaphase. The highest level of nucleosome folding of the inactive chromatin in chicken erythrocytes and rat liver nuclei is basically a second-order superhelical organization (width 150–200 nm, pitch distance 50–150 nm) of the elementary nucleosome filament. In unfavorable environments (as determined by ionic agents, fixative, and dehydrating agents) this superstructure collapses into chains of superbeads and beads. Formalin (10%) apparently attacks at discrete sites of chromatin, which are then separated into superbeads. The latter consist of 4–6 nucleosomes and seemingly correspond to successive turns of an original solenoidal coil (width 30–35 nm), which forms the superhelical organization. When this organization is unfolded, eg, in 1–2 mM EDTA, DNAse-sensitive filaments (diameter 1.7 nm) are seen to be wrapped around the nucleosomes. The wet chromosomes in each metaphase spread are held to each other by smooth microtubular fibers, 20–30 nm in diameter. Before they enter into a chromsome, these fibers branch into 9–13 protofilaments, each 5 nm wide. The chromosome surface contains a dense distribution of subunits about 10–25 nm in diameter. This size distribution corresponds to that of nucleosomes and their superbeads. Distinct from this beaded chromosome surface are several smooth, 23–30-nm-diameter fibers, which are longitudinal at the centromere and seem to continue into the chromatid structure. The surface replicas of dried chromosomes do not show these features, which are revealed only in wet chromosomes.  相似文献   

19.
Summary The ultrastructure of the epithelial basement membrane and membrane precursor was studied in rat submandibular rudiment and a model system of the reconstructed basement membrane, by transmission electron microscopy following alcian blue staining. Directly beneath the epithelial plasma membrane, a meshwork layer was found to consist of anastomosing thin fibers arranged as a three-dimensional meshwork (100–400 nm in thickness). Straight strands (5–10 nm in diameter) could sometimes be seen to pass through the meshwork. Adjacent to this layer, a coarse network composed of threads (20–40 nm in diameter) connected the meshwork layer with collagen fibers of the underlying connective tissue. The earliest precursors recognized in the reconstruction-model system were part of the fine-meshwork structure, and showed this structure to be a fundamental component of the basement membrane.  相似文献   

20.
Morphological features of fertilization envelope assembly in egges from the sea urchin Lytechinus pictus were examind in platinum replicas of samples quick-frozen, deep-etched, and rotary-shadowed at various times after insemination. Unfertilized eggs are surrounded by the vitelline layer, a glycocalyx, which faith-fully follows the contours of the microvillus-studded egg surface. The vitelline layer is secured to the plasma membrane below via a series of short projections called vitelline posts. The vitelline matrix itself is an elaborate meshwork of uniformly sized filaments, which are decorated in places with globular particles. At fertilization, the vitelline layer elevates off the egg surface and by 1 min after insemination appears as a thin, airy network of fibers. In contrast to Strongylocentrotus purpuratus, impressions of the underlying microvilli are not retained in this species. The vitelline template appears to become filled in by the deposition of amorphous secretory material between 1 and 5 min after fertilization. This smooth, amorphous layer is then coated with a thin sheet of paracrystalline material. Paracrystalline coating is incomplete at 5 min, but by 20 min after insemination the coat is complete, consisting of ordered parallel rows of roset-telike particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号