首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progesterone production of granulosa cells cultured in vitro is stimulated and cell differentiation increased, by follicle-stimulating hormone (FSH). This study examined whether the increased progesterone production observed when bovine granulosa cells are cultured occurs because (1) progesterone production by undifferentiated and/or differentiated cells is increased or (2) the differentiation of granulosa cells is stimulated. Viable bovine granulosa cells (2−3×105) from follicles 5–8 mm in diameter were cultured in the presence of 0, 1, 10 and 100 μu FSH (1 μu ≡ 1 μg NIH-FSH-S1) for 6 days at 37°C in a humidified atmosphere of 5% CO2 in air in 1 ml of a 1:1 mixture of Dulbecco's modified Eagle medium: Ham's F10 medium supplemented with 365 μg ml−1 l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin. Progesterone production, total DNA and protein, and cell diameter were determined sequentially over the culture period. The increases in progesterone production (ng μg−1 DNA per 24 h), cytoplasmic:nuclear ratio (μg protein μg−1 DNA) and cell diameter (μm) over 6 days culture indicated that granulosa cells underwent differentiation in the presence of FSH. Progesterone production of undifferentiated granulosa cells (diameter 14 μm or less) was stimulated by FSH (P < 0.01) in a dose dependent manner (1.0±0.2, 2.9±0.3, 3.7±0.3 and 4.9±0.4 ng μg−1 DNA per 24 h for 0, 1, 10 and 100 μu ml−1 FSH respectively) but remained constant within dose (P > 0.05) during a 6 day culture period. FSH stimulated (P < 0.05) the rate of granulosa cell differentiation (10±3%, 53±13%, 74±21% and 82±10% differentiating cells per well for 0 μu, 1 μu, 10 μu and 100 μu ml−1 FSH respectively) but did not stimulate (P > 0.05) progesterone production by differentiating granulosa cells (8.7±0.5 ng μg−1 DNA per 24 h). In conclusion, the increase in progesterone production of FSH-stimulated granulosa cells cultured in vitro appears to be mainly due to an increase in the number of differentiating cells with a constant rather than an increasing progesterone production per cell.  相似文献   

2.
3.
Isolated morphologically normal bovine preantral follicles (40 to 70 microm) were cultured for 8 d in collagen gel in control medium or in 1 of 3 conditioned media from the murine granulosa cell lines GRMO1L, GRMO2 and GE2. The percentages of follicles at Day 1 that remained nomal at Day 8 were similar for follicles cultured in the conditioned and control media (84 to 90%). A significantly higher percentage of follicles cultured in each of 3 conditioned media started to grow (89%; P < 0.05) and their increase in diameter was greater than that of follicles cultured in control medium (72%; P < 0.05). The mitotic activity of the granulosa cells from follicles cultured in conditioned media was increased (P < 0.05) indicated by a higher percentage of nuclei that incorporated BrdU compared with that of follicles cultured in control medium. Follicular viability was measured by the presence of nonspecific esterase activity, active mitochondria and dead cells in cultured follicles using the fluorescent probes calcein-AM, rhodamine 123 and ethidium homodimer-1 in combination with confocal laser scanning microscopy. The percentages of follicles with esterase activity and active mitochondria present in their granulosa were similar for follicles in all groups. Culturing in GRMO2 or GE2 tended to lower the number of granulosa with dead cells. The percentage of follicles with oocytes without esterase activity and active mitochondria was lower (P < 0.05) in follicles cultured in GRMO2 or GE2 compared with those cultured in control medium. Moreover, the percentages of dead oocytes tended to be higher in follicles cultured in GRMO1L and GE2 compared with oocytes of follicles incubated in control medium. Taken together, the conditioned media stimulated follicular growth and granulosa viability as well as enhance mitotic activity of the granulosa cells. However, they negatively affected oocyte viability.  相似文献   

4.
Oocytes secrete factors that regulate the development of the surrounding granulosa cells in ovarian follicles. KIT ligand (KL) mRNA expression in granulosa cells is thought to be regulated by oocytes; however, the factor(s) that mediate this effect are not known. One candidate is the oocyte-specific gene product growth differentiation factor-9 (GDF-9). This study examined the effect of recombinant GDF-9 (rGDF-9) on steady-state KL mRNA expression levels in preantral and mural granulosa cells in vitro. Furthermore, the study compared the effect of rGDF-9 with that of coculture with oocytes at different developmental stages. As determined by RNase protection assay, both KL-1 and KL-2 mRNA levels in preantral and mural granulosa cells were suppressed by 25-250 ng/ml rGDF-9. Fully grown oocytes also suppressed both KL-1 and KL-2 mRNA expression levels. Partly grown oocytes isolated from 7-, 10-, or 12-day-old mice either had no effect on KL mRNA levels or promoted KL-1 mRNA steady-state expression. It is concluded that GDF-9 is likely to mediate the action of fully grown, but not partly grown, oocytes on granulosa cell KL mRNA expression.  相似文献   

5.
The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell–cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that progressed up to the MII stage was significantly reduced. Attachment of the COCs to the membrana granulosa enhanced this inhibiting action of CMt on the progression of meiosis. It is concluded that theca cells secrete a stable factor that inhibits the progression of FSH-mediated meiosis in oocytes of COCGs. Mol. Reprod. Dev. 51:315–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
The relative rate of synthesis of a number of proteins and the protein phosphorylation pattern of growing and fully grown oocytes were influenced by the presence of granulosa cells. In particular, a 74-kDa phosphorylated protein was detected only in granulosa cell-enclosed growing mouse oocytes. When reaggregated with granulosa cells, the growing oocyte displayed the phosphorylated form of the 74-kDa protein but when oocytes were cultured on Sertoli cell monolayers or in granulosa cell-conditioned medium the 74-kDa protein was not phosphorylated. We propose that (1) granulosa cells regulate protein phosphorylation in mouse oocytes; (2) a 74-kDa protein is phosphorylated only in growing oocytes when surrounded by granulosa cells; and (3) granulosa cells, but not Sertoli cells, are competent to send the appropriate "signal" to the growing oocyte.  相似文献   

8.
In the ovarian follicle, anti-Müllerian hormone (Amh) mRNA is expressed in granulosa cells from primary to preovulatory stages but becomes restricted to cumulus cells following antrum formation. Anti-Müllerian hormone regulates follicle development by attenuating the effects of follicle stimulating hormone on follicle growth and inhibiting primordial follicle recruitment. To examine the role of the oocyte in regulating granulosa cell Amh expression in the mouse, isolated oocytes and granulosa cells were co-cultured and Amh mRNA levels were analysed by real-time RT-PCR. Expression in freshly isolated granulosa cells increased with preantral follicle development but was low in the cumulus and virtually absent in the mural granulosa cells of preovulatory follicles. When preantral granulosa cells were co-cultured with oocytes from early preantral, late preantral or preovulatory follicles, and when oocytes from preovulatory follicles were co-cultured with cumulus granulosa cells, Amh expression was increased at least 2-fold compared with granulosa cells cultured alone. With oocytes from preantral but not preovulatory follicles, this was a short-range effect only observed with granulosa cells in close apposition to oocytes. We conclude that stage-specific oocyte regulation of Amh expression may play a role in intra- and inter-follicular coordination of follicle development.  相似文献   

9.
10.
The hypothesis was tested that bovine preantral follicles can be stimulated to grow in vitro by FSH and by the mitogens, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but not by transforming growth factor-beta (TGFbeta), which generally inhibits EGF and bFGF action. Preantral follicles, 60 to 179 mum in diameter, were isolated from fetal ovaries by treatment with collagenase and DNase and cultured for 6 d in serum-free medium, with or without FSH and growth factors. Basic FGF (50 ng/ml), and to a lesser extent FSH (100 ng/ml) and EGF (50 ng/ml), stimulated thymidine incorporation by granulosa cells in bovine preantral follicles compared to control cultures (8-, 4- and 2.5-fold the labeling index of the controls; P < 0.05). Alone TGFbeta (10 ng/ml) had no effect on (3)H-thymidine incorporation, but it completely inhibited the bFGF- but not the FSH-stimulated increase in the labeling index and mean follicular diameter of preantral follicles (P < 0.05). By the end of the culture period oocytes in most treatments had degenerated, and the few surviving oocytes were in preantral follicles cultured with FSH or bFGF. Progesterone accumulation was greater (P < 0.05) in the presence of FSH (100 ng/ml) or EGF (50 ng/ml) than with bFGF, TGFbeta or control medium. Basic FGF strongly inhibited the effect of FSH on progesterone secretion (P < 0.05). Only FSH stimulated the conversion of exogenous testosterone to estradiol and both bFGF and TGFbeta markedly inhibited FSH-stimulated estradiol accumulation. These results indicate that proliferation of granulosa cells of bovine preantral follicles can be stimulated by bFGF, FSH and EGF, whereas TGFbeta inhibits growth, and that they are steroidogenically active in culture. Basic FGF and TGFbeta antagonize FSH-stimulated steroid production by granulosa cells of cultured bovine preantral follicles.  相似文献   

11.
12.
This study aimed to demonstrate the expression of growth hormone receptor (GH-R) mRNA and protein in goat ovarian follicles in order to investigate the effects of GH on the survival and development of preantral follicles. The ovaries were processed for the isolation of follicles to study GH-R mRNA expression or to localization of GH-R by immunohistochemical analysis. Pieces of ovarian cortex were cultured for 7 days in minimum essential medium+ (MEM+) in the presence or absence of GH at different concentrations (1, 10, 50, 100, and 200 ng/mL). High expression levels of GH-R mRNA were observed in granulosa/theca cells from large antral follicles. However, preantral follicles do not express mRNA for GH-R. Immunohistochemistry demonstrated that the GH-R protein was expressed in the oocytes/granulosa cells of antral follicles, but any protein expression was observed in preantral follicles. The highest (P < 0.05) rate of normal follicles and intermediate follicles was observed after 7 days in MEM+ plus 10 ng/mL GH (70%). In conclusion, GH-R mRNA and protein are expressed in caprine antral follicles, but not in preantral follicles. Moreover, GH maintains the survival of goat preantral follicles and promotes the development of primordial follicles.  相似文献   

13.
The aims of this study were to investigate steady‐state level of Kit Ligand (KL) mRNA and its effects on in vitro survival and growth of caprine preantral follicles. RT‐PCR was used to analyze caprine steady‐state level of KL mRNA in primordial, primary, and secondary follicles, and in small (1–3 mm) and large (3–6 mm) antral follicles. Furthermore, ovarian fragments were cultured for 1 or 7 days in Minimal Essential Medium (MEM+) supplemented with KL (0, 1, 10, 50, 100, or 200 ng/ml). Noncultured (control) and cultured fragments were processed for histology and transmission electron microscopy (TEM). RT‐PCR demonstrated an increase in steady‐state level of KL mRNA during the transition from primary to secondary follicles. Small antral follicles had higher steady‐state levels of KL mRNA in granulosa and theca cells than large follicles. After 7 days, only 50 ng/ml of KL had maintained the percentage of normal follicles similar to control. After 1 day, all KL concentrations reduced the percentage of primordial follicles and increased the percentage of growing follicles. KL at 10, 50, 100, or 200 ng/ml increased primary follicles, compared to MEM+ after 7 days. An increase in oocyte and follicular diameter was observed at 50 ng/ml of KL. TEM confirmed ultrastructural integrity of follicles after 7 days at 50 ng/ml of KL. In conclusion, the KL mRNAs were detected in all follicular categories. Furthermore, 50 ng/ml of KL maintained the integrity of caprine preantral follicle cultured for 7 days and stimulated primordial follicle activation and follicle growth. Mol. Reprod. Dev. 77: 231–240, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD.  相似文献   

15.
16.
In this study we evaluated whether mouse oocytes derived from early antral or preovulatory follicles could affect the ability of preantral granulosa cells to sustain oocyte growth in vitro. We found that early antral oocytes with a diameter > or =75 microm did not grow any further during 3 days of culture on preantral granulosa cell monolayers in vitro, while most of the oocytes with a smaller diameter increased significantly in size. Similarly, about 65% of growing oocytes isolated from preantral follicles grew when cultured on preantral granulosa cells. By coculturing with growing oocytes fully grown early antral or preovulatory oocytes, a small proportion (about 10%) of growing oocytes increased in diameter, and changes in granulosa cell morphology were observed. Such effects occurred as a function of the fully grown oocyte number seeded and were not associated with a decrease in coupling index values. By avoiding physical contact between antral oocytes and granulosa cells, the proportion of growing oocytes undergoing a significant increase in diameter was about 36%. These results indicate that fully grown mouse oocytes can control preantral granulosa cell growth-promoting activity through the production of a soluble factor(s) and the maintenance of functional communications with surrounding granulosa cells.  相似文献   

17.
Culture of preantral follicles has important biotechnological implications through its potential to produce large quantities of oocytes for embryo production and transfer. A long-term culture system for bovine preantral follicles is described. Bovine preantral follicles (166 +/- 2.15 micrometer), surrounded by theca cells, were isolated from ovarian cortical slices. Follicles were cultured under conditions known to maintain granulosa cell viability in vitro. The effects of epidermal growth factor (EGF), insulin-like growth factor (IGF)-I, FSH, and coculture with bovine granulosa cells on preantral follicle growth were analyzed. Follicle and oocyte diameter increased significantly (P < 0.05) with time in culture. FSH, IGF-I, and EGF stimulated (P < 0.05) follicle growth rate but had no effect on oocyte growth. Coculture with granulosa cells inhibited FSH/IGF-I-stimulated growth. Most follicles maintained their morphology throughout culture, with the presence of a thecal layer and basement membrane surrounding the granulosa cells. Antrum formation, confirmed by confocal microscopy, occurred between Days 10 and 28 of culture. The probability of follicles reaching antrum development was 0.19 for control follicles. The addition of growth factors or FSH increased (P < 0.05) the probability of antrum development to 0.55. Follicular growth appeared to be halted by slower growth of the basement membrane, as growing follicles occasionally burst the basement membrane, extruding their granulosa cells. In conclusion, a preantral follicle culture system in which follicle morphology can be maintained for up to 28 days has been developed. In this system, FSH, EGF, and IGF-I stimulated follicle growth and enhanced antrum formation. This culture system may provide a valuable approach for studying the regulation of early follicular development and for production of oocytes for nuclear/embryo transfer, but further work is required.  相似文献   

18.
《Process Biochemistry》1999,34(3):295-301
When BmN-4 and M-BmN cells were grown in shake flasks, the pH initially dropped and later increased. The increase in pH signaled a ‘metabolic switch’ that was used here as an indicator for initiating a supplemental glucose and glutamine feed. Using the pH-based fed-batch culture method described, the maximum cell densities of BmN-4 cells and M-BmN cells were increased from 30×105 cells ml−1 to 43×105 and 52×105 cells ml−1, respectively. Correspondingly, the production of polyhedra (4·5×105 OBs ml−1) and HBsAg (574 ng ml−1), from the infection of BmN-4 and M-BmN by wild-type and recombinant BmNPV viruses, respectively, were both significantly enhanced 50% and 100%, respectively. This feeding strategy was implemented with no advanced instrumentation yet facilitated significantly increased yield in shake flasks. The technique should benefit those in research laboratories employing the baculovirus expression system as a rapid and efficient production system.  相似文献   

19.
The effects of granulosa cells in maturation media on male pronuclear formation and in vitro development of in vitro-matured and fertilized (IVM-IVF) bovine oocytes were examined. In Experiment 1, cumulus-oocyte complexes (COCs) were aspirated from follicles of slaughterhouse ovaries and classified into 4 morphological categories according to the surrounding cumulus cells: Grade 1 (> 4 layers), Grade 2 (3 to 4 layers), Grade 3 (1 to 2 layers) and Grade 4 (denuded). Oocytes were co-cultured with or without granulosa cells (1 x 10(6) cells/ml) for 21 to 22 h. At 18 and 192 h after insemination, the abilities of oocytes to form a male pronucleus and develop up to the blastocyst stage in vitro were determined, respectively. The presence of granulosa cells during maturation did not affect (P < 0.05) the ability of oocytes in Grades 1 and 2 to form a male pronucleus and to develop to the blastocyst stage in Grades 1 and 4. However, the incidence of male pronuclear formation in Grades 3 and 4 and in vitro development to the blastocyst stage in Grades 2 and 3 was higher (P < 0.05) when COCs were cultured in the presence of granulosa cells than when cultured in the absence of granulosa cells. In Experiment 2, COCs collected by ultrasound-guided aspiration were co-cultured with or without granulosa cells, fertilized and cultured as described above. The incidence of blastocysts at 192 h after insemination was higher (P < 0.05) when COCs were cultured for maturation in the presence of granulosa cells (24%) than in the absence of granulosa cells (12%). These results demonstrate that supplementation of maturation medium with granulosa cells improves the quality of oocytes with relatively few cumulus cell layers, as determined by male pronuclear formation and in vitro development. We also conclude that this supplementation effectively improves the developmental ability of bovine IVM-IVF oocytes that were collected by ultrasound-guided transvaginal aspiration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号