首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The first meiotic cell division (meiotic maturation) of dictyate stage mouse oocytes removed from the follicle resumes spontaneously in vitro. We used the puromycin analog 6-dimethylaminopurine (6-DMAP) to test the respective roles of protein synthesis and protein phosphorylation in driving this process. While protein synthesis inhibitors do not block meiosis resumption, 6-DMAP was found to inhibit germinal vesicle breakdown (GVBD), by inhibiting the burst of protein phosphorylation without changing the rate of incorporation of [35S]methionine into proteins. This effect is reversible; it depends both upon drug concentration and the particular female. When added after GVBD and before the emission of the first polar body, 6-DMAP decreases the level of protein phosphorylation and induces decondensation of the chromosomes and reformation of the nuclear envelope. In contrast, 6-DMAP did not trigger these processes in metaphase II oocytes which only produce resting nuclei when treated by protein synthesis inhibitors. From these data, we conclude that (1) the early appearance and stability of mouse MPF in Metaphase I oocytes depend on protein phosphorylation rather than on protein synthesis, and (2) protein synthesis is necessary to maintain the condensation of the chromosomes in metaphase II oocytes.  相似文献   

3.
The objective of this study was the preliminary characterization of the factors from mitotic HeLa cells that can induce meiotic maturation in Xenopus laevis oocytes. We found that this factor is a heat-labile, Ca2+-sensitive, nondialyzable protein with a sedimentation value of 4-5S. Furthermore, no new protein synthesis was found to be required for this mitotic factor to induce maturation in the amphibian oocytes. These data suggest that the factors involved in the breakdown of nuclear membrane and the condensation of chromosomes that are associated with three different phenomena, mitosis, meiosis, and premature chromosome condensation, are very similar in different animal species.  相似文献   

4.
Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.  相似文献   

5.
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.  相似文献   

6.
The puromycin analog N6,N6-dimethyladenine (6-dimethylaminopurine or 6-DMAP) was found to inhibit meiosis reinitiation in starfish oocytes stimulated by the natural hormone 1-methyladenine. Increasing concentrations of this agent delayed and eventually blocked germinal vesicle breakdown. They were found to be effective even when applied during the hormone-independent period, after the oocytes had been already committed to reinitiate meiosis. 6-DMAP mimics most of the effects of emetine since it induces protein dephosphorylation, inhibits polar body formation, and promotes the precocious appearance of resting nuclei. However, unlike emetine, 6-DMAP does not affect protein synthesis. The effect of this agent cannot be accounted for by a stimulation of the protease or phosphoprotein phosphatase activities since the rate and extent of protein dephosphorylation do not increase in its presence. Data from in vivo and in vitro endogenous protein phosphorylation experiments suggest rather that 6-DMAP may directly or indirectly affect the activity of a relevant c-AMP and Ca2+-independent protein kinase which is stimulated after hormone addition and seems to support starfish oocyte maturation.  相似文献   

7.
Nuclear membrane permeabilization is required for replication of quiescent (G0) cell nuclei inXenopusegg extract. We now demonstrate that establishment of replication competence in G0 nuclei is dependent upon a positive activity present in the soluble egg extract. Our hypothesis is that G0 nuclei lose the license to replicate following growth arrest and that this positive activity is required for relicensing DNA for replication. To determine if G0 nuclei contain licensed DNA, we used the protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), to prepare egg extracts that are devoid of licensing activity. Intact nuclei, isolated from mammalian cells synchronized in G1-phase (licensed), G2-phase (unlicensed), and G0 were permeabilized and assayed for replication in 6-DMAP-treated and untreated extracts supplemented with [α-32P]dATP or biotinylated-dUTP. Very little radioactivity was incorporated into nascent DNA in each nuclear population; however, nearly all nuclei in each population incorporated biotin in 6-DMAP extract. The pattern of biotin incorporation within these nuclei was strikingly similar to the punctate pattern observed within nuclei incubated in aphidicolin-treated extract, suggesting that initiation events occur within most replication factories in 6-DMAP extract. However, density substitution and alkaline gel analyses indicate that the incorporated biotin within these nuclei arises from a small number of active origins which escape 6-DMAP inhibition. We conclude that 6-DMAP-treated egg extract cannot differentiate licensed from unlicensed mammalian somatic cell nuclei and, therefore, cannot be used to determine the “licensed state” of G0 nuclei using the assays described here.  相似文献   

8.
In prophase I-arrested surf clam oocytes, fertilization is the normal trigger for resumption of meiosis, first evidenced by germinal vesicle breakdown (GVBD). Various artificial agents are able to induce GVBD and most of them require the presence of external Ca2+ to be efficient. One exception to this rule is the reported possibility of inducing GVBD by an hypertonic treatment, using high concentrations of glycerol, in the complete absence of external Ca2+. We have investigated the processes underling glycerol-induced activation and found that, under this condition, GVBD shows very slow kinetics and is not followed by any normal subsequent steps of meiosis, such as formation of metaphase chromosomes or polar body extrusion. Glycerol-activated oocytes do not show the normal response in protein synthesis but they undergo increased protein phosphorylation which is inhibited by 6-dimethylaminopurine (6-DMAP), which also inhibits GVBD. We conclude that the hypertonic treatment by glycerol, in the complete absence of external Ca2+, induces a partial program of activation through increased protein phosphorylation but that the normal full response requires an increased Ca2+ influx as triggered by other well-known artificial activating agents.  相似文献   

9.
Germinal vesicle (GV)-stage horse oocytes with diffuse chromatin are meiotically incompetent and degenerate in culture, whereas horse oocytes having condensed chromatin within the GV are meiotically competent. Degeneration of incompetent oocytes in culture may be related to premature GV breakdown, which could possibly be prevented by inhibition of m-phase protein activity. We examined the effects of 6-dimethylaminopurine (6-DMAP), butyrolactone and roscovitine on GV-stage horse oocytes. Culture in the presence of 2 mM 6-DMAP for 24 h suppressed meiosis (2% MI or MII compared with 38% for untreated oocytes). The proportion of GV-stage oocytes having condensed chromatin was not different between 6-DMAP culture and directly fixed controls; however, the proportion of oocytes with diffuse chromatin was significantly lower, and more oocytes with diffuse chromatin had atypical chromatin than did controls (p < 0.01). Culture with butyrolactone at 100 microM suppressed meiosis (5% MI + II). Again, this treatment maintained GV-stage oocytes having condensed chromatin, but the proportion of oocytes with diffuse chromatin was significantly reduced compared with directly fixed controls (p < 0.05). Culture with roscovitine at 25 microM was also effective in maintaining GV-stage oocytes having condensed chromatin; however, culture with 100 microM roscovitine did not suppress meiosis or maintain oocytes in the GV stage. These results indicate that meiosis in GV-stage horse oocytes having condensed chromatin may be suppressed by inhibitors of m-phase protein activity; however, oocytes originally having diffuse chromatin appear to degenerate in culture even in the presence of these inhibitors.  相似文献   

10.
11.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

12.
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD) and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects, including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.Key words: Cdc6, spindle assembly, Xenopus, oocytes, pre-RC proteins  相似文献   

13.
Development of an effective activation protocol is of great importance for studying oocyte competence and embryo cloning. Experiments were designed to examine effects of intracellular calcium elevating agents such as calcium ionophore A23187 (CaA) and ethanol, or protein synthesis and phosphorylation inhibitors such as cycloheximide (CH) and 6-dimethylaminopurine (6-DMAP), or a sequential combination of these agents on both parthenogenetic development and protein patterns of newly matured bovine oocytes. Oocytes were matured for 24 hr in M-199 supplemented with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol at 39°C in humidified air. They were then activated by various treatments and cultured in KSOM. Protein patterns at 15 hr after treatment were determined on 8–15% gradient SDS-PAGE and silver stained. Results demonstrated that none of the chemical agents—CaA, ethanol, 6-DMAP, or cycloheximide—could effectively induce parthenogenetic development of young bovine oocytes. When compared with the single treatments, sequentially combined treatments of CaA with 6-DMAP or with cycloheximide plus cytochalasin D (CD) significantly increased the rates of cleavage (78–82% versus 3–13%) and blastocyst development (31–40% versus 0%), which were comparable with those of IVF group (80% and 35%, respectively; P > 0.05). Supplementation with CD to the combined CaA and CH treatment improved rates of cleavage and blastocyst development versus without CD supplementation (31% versus 7%; P < 0.05). Fluorescent microscopy revealed that 95% (n = 40) of oocytes treated with CaA plus 6-DMAP had one pronucleus (PN) and one polar body (PB), while 88% (n = 40) in the CaA plus cycloheximide–treated group had one PN and two PBs and 85% (n = 40) in CaA plus cycloheximide and CD group had two PNs and one PB. Treatment by CaA alone resulted in 73% of oocytes (n = 40) arrested at a metaphase stage with two PBs (named as metaphase III or MIII). Protein patterns were similar for chemically activated and in vitro–fertilized (IVF) oocytes in that the 138- and 133-kDa proteins, whose functions are not yet known, were present in the metaphase-stage (MII 24 hr, MII 40 hr, and MIII) oocytes but were absent in PN-stage oocytes regardless of treatment. Therefore, these proteins seem to be metaphase-associated proteins. Taken together, we conclude that optimal parthenogenetic development of newly matured bovine oocytes can be obtained by calcium ionophore treatment followed by incubation in either 6-DMAP or cycloheximide plus cytochalasin D and that the reduction of the 138- and 133-kDa proteins might be necessary for the full activation of bovine oocytes. Mol. Reprod. Dev. 49:298–307, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Protein phosphatase 2A (PP2A) is a heterotrimer consisting of A and B regulatory subunits and a C catalytic subunit. PP2A regulates mitotic cell events that include the cell cycle, nutrient sensing, p53 stability and various mitogenic signals. The role of PP2A during meiosis is less understood. We explored the role of Saccharomyces cerevisiae PP2A during meiosis. We show a PP2ACdc55 containing the human B/55 family B subunit ortholog, Cdc55, is required for progression through meiosis I. Mutant cells lacking Cdc55 remain mononucleated. They harbor meiotic gene expression, premeiotic DNA replication, homologous recombination and spindle pole body (SPB) defects. They initiate but do not complete replication and are defective in performing intergenic homologous recombination. Bypass alleles, which allow cells defective in recombination to finish meiosis, do not suppress the meiosis I defect. cdc55 cells arrest with a single SPB lacking microtubules, or duplicated but not separated SBPs containing microtubules. Finally, the premeiotic replication defect is suppressed by loss of Rad9 checkpoint function. We conclude PP2ACdc55 is required for the proper temporal initiation of multiple meiotic events and/or monitors these events to ensure their fidelity.  相似文献   

15.
Summary Amounts of chromosomal DNA were estimated for Feulgen-stained, ovarian cells from flies carrying certain mutant alleles of the otu (ovarian tumor) gene. Epithelial sheath cells and lumen cells were found to contain the diploid (2C) amount of DNA and therefore served as internal, cytophotometric standards. Mitotically active follicle cells over young tumors-from homozygous otu 1 females contained either the 2C or 4C amounts of DNA; whereas, the tumor cell population contained 2C, 4C and 8C nuclei and many intermediate values. Egg chambers also occur in homozygous otu 7 females. Follicle cells above these oocytes undergo a maximum of four cycles of endomitotic DNA replication. The accompanying nurse cells (PNC) contain polytene chromosomes. These undergo a maximum of 12 endonuclear replication cycles. The PNCs show the expected levels of DNA for the first 6 cycles and the fraction failing to replicate during subsequent cycles may be as small as 10%. Lower than expected levels of DNA were detected in PNCs from an otu 1/otu 3 ovary, reflecting roughly 20% underreplication. The latter PNCs may have been interrupted before DNA synthesis was concluded. No simple model of genomic underreplication accounts for the several different patterns of DNA behavior observed for various otu mutants.  相似文献   

16.
The developmental competence of bovine follicular oocytes that had been meiotically arrested with the phosphokinase inhibitor 6-dimethylaminopurine (6-DMAP) was studied. After 24 h in vitro culture with 2 mM 6-DMAP, 85 ± 12% of the oocytes were at the germinal vesicle stage compared to 97 ± 3% at the start of culture (P > 0.05). After release of the 6-DMAP inhibition, followed by 24 h IVM, 82 ± 18% were at MII stage, compared with 93 ± 7% in the control group (P > 0.05). The 6-DMAP oocytes displayed a much higher frequency of abnormal MII configurations than the control oocytes (67% vs 23%; P < 0.0001). In addition spontaneous oocyte activation was more frequent than among control oocytes (5% vs 0.3%; P 0.0006). After IVF of 6-DMAP oocytes, normal fertilization was lower (76 ± 8% vs 89 ± 7%; P < 0.01), oocyte activation higher (11 ± 5% vs 2 ± 2%; P < 0.01), and polyspermy slightly but not significantly higher (8 ± 7% vs 4 ± 4%; P > 0.05), compared with the control group. Cleavage was lower (61 ± 13% vs 81 ± 6%; P < 0.001), as well as day 8 blastocyst formation (17 ± 7% vs 36 ± 8%; P < 0.001). The MII kinetics was different for 6-DMAP and control oocytes. Maximum MII levels were reached at 22 h IVM in both groups, but 50% MII was reached at 17 h in 6-DMAP oocytes, compared to 20 h in control oocytes. Ultrastructure of MII oocytes was similar in the two groups, but in 6-DMAP oocytes the ooplasmic vesicle pattern at GV was at a more advanced stage than in control oocytes. In conclusion, 6-DMAP exposure of GV oocytes prior to IVM induce asynchronous cytoplasmic maturation, leading to aberrant MII kinetics. Thus, at the time of insemination a smaller cohort of oocytes will be at the optimal stage for normal fertilization and subsequent blastocyst development. Mol. Reprod. Dev. 50:334–344, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Summary The spatial and temporal patterns of macromolecular syntheses in oocytes and somatic auxiliary cells of the snail Planorbarius corneus have been investigated by autoradiography and cytophotometry. Oogenesis has been divided into three stages, comprising early meiosis up to diplotene (stage I), previtellogenetic growth phase (stage II), and vitellogenesis (stage III). No DNA synthesis was found in any oocyte stage. In stage-I oocytes, only nucleoli were found labelled with 3H-uridine. Oocyte nuclei of stage II and III actively synthesize RNA in nucleoli and chromosomes. The most intense incorporation of uridine in chromatin probably occurs during the previtellogenesis — vitellogenesis transition period during which cytological findings suggest well developed lampbrush chromosomes. RNA synthesis in amphinucleoli of stage-III oocytes is restricted to basophilic nucleolar parts, whereas acidophilic parts (protein bodies) neither synthesize nor store RNA. During vitellogenesis oocytes incorporate amino acids into yolk platelet proteins. Radioactive proteins are found in yolk platelet precursors 5 h after injection of the tracer and in yolk platelets 3 h thereafter. The labelling pattern suggests that oocytes synthesize certain hitherto unidentified yolk components. No evidence for the participation of follicle cells in synthesis and transport of vitellogenic proteins has been obtained from autoradiography. Cytological findings suggest an important role for these cells in oogenesis. They are highly active in RNA and protein synthesis. Cellular differentiation is accompanied by polyploidization of the nuclei which attain a highest DNA content of 256 c. Polyploidization probably occurs in incremental steps as indicated by complete endomitotic chromosomal cycles. Autoradiographs show that, during vitellogenesis, oocytes do not incorporate significant amounts of glucose, and only certain follicle cells were labelled with glucose, probably indicating the synthesis of glycogen.  相似文献   

18.
In denuded mouse oocytes, neither 3 nor 5 hours of preincubation in dbcAMP (1 mM) and cycloheximide (10 micrograms/ml), followed by further 3 hours in cycloheximide only, lowered the rate of GVBD (93% and 92%, respectively). It means that 3 and 5 hours preincubation in cycloheximide did not impair the ability of mouse oocytes to resume meiosis in medium with the protein synthesis inhibitor. To test the combined effects of inhibition of protein phosphorylation and protein synthesis, oocytes were cultured for 3, 4, or 5 hours in 2 mM of 6-DMAP and subsequently for 3 hours in 10 micrograms/ml cycloheximide. The incubation in 6-DAMP for 4 or 5 hours diminished (63% or 35% of GVBD, respectively) the ability of mouse oocytes to resume meiosis when subsequent protein synthesis was blocked by cycloheximide. However, the highly condensed bivalents were always visible in GVs. Thus the above treatment did not prevent chromatin condensation although GVBD was blocked.  相似文献   

19.
Inhibition of protein synthesis by cycloheximide blocks DNA replication in many eukaryotic cells. To test whether this effect was mediated through enzymes furnishing DNA precursors, pool sizes of deoxyribonucleoside triphosphates were measured following cycloheximide treatment in the synchronous mitotic cycle of Physarum. It was found that cycloheximide either did not affect the pool size of DNA precursors (dATP and dGTP) or it led to a pool expansion (dCTP and dTTP). It is concluded that the arrest of DNA replication by inhibitors of protein synthesis is not due to a lack of precursors.  相似文献   

20.
During mammalian oocyte growth, genomic DNA may accumulate DNA double-strand breaks (DSBs) induced by factors such as reactive oxygen species. Recent evidence demonstrated that slight DSBs do not activate DNA damage checkpoint proteins in denuded oocytes. These oocytes, even with DNA DSBs, can resume meiosis and progress to metaphase of meiosis II. Meiotic resumption in oocytes is also controlled by the surrounding cumulus cells; accordingly, we analyzed whether cumulus-cell enclosed oocytes (CEOs) with DNA damage are able to resume meiosis. Compared with DNA-damaged denuded oocytes, we found that meiotic resumption rates of CEOs significantly decreased. To assess the mechanism by which cumulus cells block meiotic resumption in CEOs with DNA DSBs, we treated the cumulus oocyte complex with the gap junction inhibitor carbenoxolone and found that carbenoxolone can rescue the block in CEO meiosis induced by DNA DSBs. Since cumulus cell-synthesized cAMPs can pass through the gap junctions between oocyte and cumulus cell to block oocyte meiosis, we measured the expression levels of adenylate cyclase 1 (Adcy1) in cumulus cells, and G-protein coupled receptor 3 (Gpr3) and phosphodiesterase 3A (Pde3a) in oocytes, and found that the mRNA expression level of Adcy1 increased significantly in DNA-damaged cumulus cells. In conclusion, our results indicate that DNA DSBs promote cAMP synthesis in cumulus cells, and cumulus cAMPs can inhibit meiotic resumption of CEOs through gap junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号