首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five experiments, utilizing 3741 embryos produced in vitro, were designed to test the effects of Eagle's nonessential amino acids, and combinations of Eagle's essential amino acids and the RNA polymerase inhibitor α-amanitin on the development of preimplantation bovine embryos in a modified protein-free KSOM medium. Embryos were cultured in 5% O2:5% CO2:90% N2 at 39°C for the first 40–44 hr in modified KSOM, and embryos with ≥4 cells were cultured in modified KSOM-PVA with different amino acids in experiments 1–4, and with the addition of α-amanitin in experiment 5. In experiment 1, addition of 0.5× of the essential amino acids, with different concentrations of nonessential amino acids significantly increased hatching of blastocysts and decreased blastocyst degeneration, but increasing the nonessential amino acids from 1× to 5×, did not stimulate embryo development. In experiments 2–4, increasing only the glycine concentration, or adding each of the 12 essential amino acids singly or several in combination to the medium containing nonessential amino acids, did not significantly improve embryo development. Taurine (0.4 mM) in the modified KSOM medium reduced blastocyst degeneration. In experiment 5, α-amanitin (20 μM) completely inhibited further embryo development when it was added at several stages from 4-cell embryos to morulae. The study with protein-free KSOM plus amino acids provided a completely defined simple medium for culturing bovine embryos, with evidence that continuous mRNA activity and presumed protein synthesis was obligatory to meet the complex and continuous requirements for proteins by the developing blastocyst. Mol. Reprod. Dev. 46:278–285, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
To elucidate the effect of nutrient substrates on embryo development, in vitro fertilized bovine one-cell embryos were cultured in a medium similar to synthetic oviduct fluid (SOF) but without glucose and containing 3.3 mM lactate, 0.3 mM pyruvate and 3 mg/ml bovine serum albumin (BSA) at 39 degrees C in 5% CO(2) in air. Results indicated that addition of glucose was not only unnecessary, but it also had a deleterious effect on embryo development to the morula stage. Lactate supported embryo development up to the morula stage as well as pyruvate. Supplementation with 20 amino acids contained in basal medium Eagle's (BME) and minimum essential medium (MEM) improved development to the morula stage dramatically and increased the cell number compared with that of the controls. Addition of the vitamins from MEM to SOF had no beneficial effect. The SOF with amino acids did not increase the frequency of blastocysts 7 days after in-vitro fertilization but did increase the total number of cells compared with that of the controls. Frequency of blastocysts at Day 7 in SOF with amino acids was equivalent to that of co-culture although the total cell number was lower. These results demonstrate that a semi-chemically defined medium can successfully support the development of bovine embryos to the morula stage to a limited extent, but the medium lacks some nutrients or growth factors to fully support development through the blastocyst stage.  相似文献   

5.
Several media, some augmented with amino acids, have been formulated recently, based on simplex optimization, to support the preimplantation development of mouse embryos. For the highly limited studies on preimplantation development of nonhuman primate embryos, a complex medium (CMRL-1066) has been employed. Our objective was to compare the developmental ability of rhesus monkey embryos in a simple medium containing amino acids, KSOM/AA, with the complex media used previously. Zygotes (99) were recovered following in vitro fertilization (IVF) from six monkeys, allocated to either CMRL or KSOM/AA both containing 10% fetal calf serum (FCS), and monitored daily until reaching the expanded or hatched blastocyst stage. The distribution of cells between the inner cell mass (ICM) and trophectoderm was determined at the end of culture by differential nuclear staining. Although a greater number of embryos cultured in KSOM/AA vs. CMRL developed to the morula stage (80%) and beyond (66% to expanded blastocyst), the differences were not significant. Such embryos in KSOM/AA did, however, develop at a significantly faster rate, on average, reaching the expanded blastocyst stage 26 hr earlier than did embryos cultured in CMRL. KSOM/AA embryos hatched in less time and had a higher percentage (43 vs. 34) of cells allocated to the ICM. These results indicate that a simple medium, KSOM/AA, in the presence of serum, supports the development of rhesus monkey embryos at high efficiency and at a faster rate than that observed for embryos cultured in the complex medium, CMRL-1066. © 1996 Wiley-Liss, Inc.  相似文献   

6.
7.
In vitro culture (IVC) systems are required for many biotechnological and assisted reproductive technologies and the researchers have been modifying in vitro embryo culture conditions to reach the comparable efficiencies provided in vivo. In the present study, the effects of beta-mercaptoethanol (Beta-ME) and amino acids (AA) on the development of mouse embryos obtained in vivo or in vitro at different stages were investigated. Chemically defined potassium simplex optimized medium (KSOM) was used as basic culture medium and six experimental groups were established and by supplementation of Beta-ME and AA into KSOM media. The quality of blastocysts was evaluated by counting the cells and determining the ratio of inner cell mass (ICM) to trophoectoderm (TE) cells. In addition, embryo transfer (ET) was performed to investigate the rate of implantation and live fetuses. The results obtained in the present study demonstrated that the combined treatment of Beta-ME and AA to 1-cell stage embryos not only enhanced in vitro development to the blastocyst stage but also improved both the number of blastocysts cells and live fetuses.  相似文献   

8.
Experiments were conducted to investigate the beneficial effects of adding retinol (RT) and retinoic acid (RA) to bovine oocyte maturation media and insulin-like growth factor-I (IGF-I) to embryo culture under chemically-defined conditions. In Experiment 1.1, in vitro maturation (IVM) was performed in basic maturation media (bMM) and supplemented with 0.3microM RT or 0.5microM RA. For embryo development presumptive zygotes and embryos were placed in droplets of potassium simplex optimized medium (KSOM). Addition of RT and RA to bMM improved (p<0.05) blastocyst formation as compared with control treatments. In Experiment 1.2, using embryos originating from oocytes previously treated with RT and RA, the presumptive zygotes were placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The number of 2-4-cell stage embryos developing to the blastocyst and expanded blastocyst stages were greater (p<0.05) when embryo culture media was supplemented with IGF-I. In Experiment 2.1, IVM was conducted with bMM+FSH containing 0.3microM RT or 0.5microM RA. For embryo development, presumptive zygotes were placed in droplets of KSOM. Addition of RT or RA to IVM medium also enhanced (p<0.05) blastocyst formation. The supplementation of embryo culture media with IGF-I resulted in a greater number (p<0.05) of 2-4-cell stage embryos developing into blastocysts, expanded blastocysts and hatched blastocysts. In Experiment 2.2, using embryos originating from oocytes previously treated with RT and RA, presumptive zygotes were also placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The supplementation of embryo culture media with IGF-I resulted in a greater (p<0.05) number of 2-4-cell stage embryos developing to the blastocyst, expanded blastocyst and hatched blastocyst stages.  相似文献   

9.
Li R  Wen L  Wang S  Bou S 《Theriogenology》2006,66(2):404-414
In this study, we examined the development, freezability and amino acid consumption of in vitro produced bovine embryos cultured in a chemically defined medium (SOF+polyvinyl alcohol), supplemented with 24 amino acids at concentrations measured in bovine oviductal or uterine fluid. Amino acids at concentrations in oviductal fluid tested by Elhanssan (EOAA) significantly improved development to the hatched blastocyst stage, compared to Sigma amino acid solutions BME and MEM (SAA). Amino acids at concentrations in uterine fluid tested by Li (LUAA) were not compared to SAA, and development in LUAA was not significantly different from development in EOAA. Amino acids at concentrations in uterine fluid tested by Elhanssan (EUAA) significantly reduced cleavage rate and blocked further embryo development. When the IVF embryos were cultured in EOAA for 48, 72, 96, or 120 h and then transferred to LUAA, blastocyst and hatched blastocyst rates were not significantly affected. The freezability of blastocysts cultured in EOAA for the first 72 h and then moved to LUAA was improved compared to that in SAA. During the 1-8-cell stages, embryos secreted all 23 amino acids (total, 6,368 pmol/embryo). During the 8-cell to morula stages, embryos continued to secrete 21 amino acids (total, 2,495 pmol/embryo), meanwhile embryos began to absorb Arg (70 pmol/embryo) and Gln (18 pmol/embryo). After the morula stage, embryos began to absorb 15 amino acids including Glu, Gly, Arg, and Gln (total, 2,742 pmol/embryo) and secreted eight amino acids (total, 1,616 pmol/embryo). Embryos absorbed only Arg (183 pmol/embryo) and secreted the other 22 amino acids (total, 3,697 pmol/embryo) when the culture medium was not changed during the entire culture period (zygote to blastocyst).  相似文献   

10.
In vitro production of blastocyst stage embryos from Macaca fascicularis (Mf) has not previously been demonstrated without cell support. Historical data indicates that a large proportion of Mf embryos arrest at the morula stage in nonsequential culture medium (NSM) lacking serum supplementation and/or cell support. Here we report the application of a sequential culture system supporting in vitro production of Mf blastocysts. Mf embryos produced by in vitro fertilization (IVF; n = 69) were subjected to in vitro culture without cell support in either a commercial sequential embryo culture medium (SM) or an NSM. At 24 hr post-insemination (PI) embryos generated from in vivo and in vitro matured oocytes and cultured in the NSM cleaved to two or more cells in significantly greater proportions (15/23; 65%) compared to embryos cultured in SM (14/46; 30%). However, by day 3 PI embryo development beyond eight cells was not different in NSM (9/23; 39%) compared to SM (25/46; 54%). At day 5 PI embryo development to the morula stage was slightly lower in NSM (8/23, 35%) compared to SM (21/46, 45%), and embryo degeneration was slightly higher in NSM (9/23, 39%) compared to SM (9/46, 20%). After 7-9 days of in vitro culture, embryo development to the blastocyst stage and embryo degeneration were significantly lower and higher, respectively, in NSM (0/23, 0%; and 23/23, 100%) compared to SM (9/46, 20%; and 26/46, 56%). In this study the sequential culture system was better able to support in vitro development of Mf embryos compared to nonsequential culture systems.  相似文献   

11.
To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos.  相似文献   

12.
Hong JY  Yong HY  Lee BC  Hwang WS  Lim JM  Lee ES 《Theriogenology》2004,62(8):1473-1482
This study was conducted to develop a serum-free, defined medium for IVM of pig oocytes. Modified North Carolina State University (mNCSU)-23 media with or without supplementation with both epidermal growth factor (EGF) and gonadotrophin were used as base media. In separate experiments, each base medium was supplemented with porcine follicular fluid (pFF), polyvinyl alcohol (PVA), PVA and essential amino acids (EAA), PVA and nonessential amino acids (NEAA) or PVA with both EAA and NEAA. Averaged across these five treatments, the percentage of blastocyst formation was higher (P < 0.05) in the base medium supplemented with EGF and gonadotrophins. In both base media, the addition of NEAA yielded similar percentages of maturation (81-82% versus 75-80%), sperm penetration (89-93% versus 80-86%) and blastocyst formation (4-18% versus 4-13%) as media supplemented with pFF. Although similar benefits were found after the addition of EAA, their addition was associated with lower (P < 0.05) maturation (66%) and sperm penetration (58%) than when pFF was added to the base medium without EGF and gonadotrophins. However, decreased maturation after EAA addition was not detected in the base medium containing EGF and gonadotrophins. Within the same base medium, monospermy, male pronucleus formation, cleavage and blastocyst formation were not affected by the treatments; and combined addition of EAA and NEAA did not further improve oocyte development. In conclusion, a maturation system using a defined mNCSU-23 medium supplemented with EGF, gonadotrophins and EAA or NEAA was developed which yielded a similar number of blastocysts compared with a pFF-containing medium.  相似文献   

13.
One-cell mouse embryos that block at the 2-cell stage can progress to the morula stage in CZB medium, but fail to cavitate and then swell and lyse. A 1-min exposure to 27 mM glucose at the 4-cell stage (~42 hr) will support a high frequency of development to the blastocyst stage (75%) in the same medium. A glucose exposure is beneficial anytime between 30 and 54 hr of culture (67–73% blastocysts). Of a group of additional sugars and glucose analogues tested for their ability to replace glucose, only galactose was equivalent in promoting embryo development to the blastocyst stage (64% blastocysts). © 1994 Wiley-Liss, Inc.  相似文献   

14.
Embryo metabolism is an indicator of viability and, therefore, efficiency of the culture medium. Currently, little is known regarding porcine embryo metabolism. The objective of our study was to evaluate glucose and pyruvate uptake and lactate production in porcine embryos cultured in two different media systems. Oocytes were matured and fertilized according to standard protocols. Embryos were allocated randomly into two culture treatments, NCSU23 medium or G1.2/G2.2 sequential culture media 6-8 h post-insemination (hpi). Embryo substrate utilization was measured at the two-cell (24-30 hpi), 8-cell (80 hpi), morula (120 hpi), and blastocyst (144 hpi) stages using ultramicrofluorimetry. Glucose uptake was higher (P < 0.05) in two-cell embryos cultured in G1.2 than in NCSU23 medium (4.54 +/- 0.71, 2.16 +/- 0.87 pmol/embryo/h, respectively). Embryos cultured in G1.2/G2.2 produced significantly more lactate than those in NCSU23 at the eight-cell stage (9.41 +/- 0.71, 4.42 +/- 0.95 pmol/embryo/hr, respectively) as well as the morula stage (11.03 +/- 2.31, 6.29 +/- 0.77 pmol/embryo/hr, respectively). Pyruvate uptake was higher (P < 0.05) in morula cultured in G1.2/G2.2 versus NCSU23 (22.59 +/- 3.92, 11.29 +/- 1.57 pmol/embryo/h, respectively). Lactate production was greater (P < 0.05) in blastocysts cultured in G1.2/G2.2 (38.13 +/- 15.94 pmol/embryo/h) than blastocysts cultured in NCSU23 (8.46 +/- 2.38 pmol/embryo/h). Pyruvate uptake was also greater in blastocysts cultured in G1.2/G2.2 (24.3 +/- 11.04) than those in NCSU23 (11.30 +/- 2.70). When cultured in NCSU23 medium, two- and eight-cell embryos utilized less glucose than morulae and blastocysts, and two-cell embryos produced less lactate than blastocysts (P < 0.05). In G1.2/G2.2 media, two-cells took up less pyruvate than morulae or blastocysts, while blastocysts produced more lactate and utilized more glucose than two-cell, eight-cell and morula stage embryos (P < 0.05). As in other species, glycolysis appears to be the primary metabolic pathway in post-compaction stage porcine embryos. Culture medium composition affects not only substrate uptake, but also metabolic pathways by which these substrates are utilized in porcine embryos at several developmental stages.  相似文献   

15.
The present study determines the effect of a specific and an irreversible inhibitor of histidine decarboxylase (HDC), α-fluoromethylhistidine (α-FMH) on the mouse preimplantation embryo development in vitro. The embryo culture technique was used to assess the effect of α-FMH. Embryos recovered at 0800–0900 hr (AM) on day 3 of pregnancy were 4–8 cells, whereas those recovered at 1600–1630 hr were mostly 8-cell compacted embryos. Of the day 3-AM embryos, 81.3 ± 4.3% developed to blastocysts within 48 hr when cultured in the medium alone, but addition of α-FMH (0.19 or 0.38 mM) drastically reduced the blastocyst formation to 26.6 ± 7 or 16.8 ± 4.3%. Most of them were arrested before the compaction stage. Addition of L-histidine, the substrate for HDC, did not alter the inhibition of blastocyst formation in the presence of α-FMH (37.2 ± 10.9%). Of the day 3-PM embryos, 99.3 ± 0.7% developed to blastocyst stage when cultured in the medium alone and addition of α-FMH (0.19 or 0.38 mM) did not affect the embryo development (92.1 ± 4.3 or 81.9 ± 9.9% developed to blastocysts). The birth of healthy young following transfer of these blastocysts into pseudopregnant mice indicates normal development of the embryos under this condition. The results suggest that histamine synthesis may be required for the process of compaction and thus the formation of blastocyst.  相似文献   

16.
The objectives of this study were to identify an improved in vitro cell-free embryo culture system and to compare post-warming development of in vitro produced (IVP) bovine embryos following vitrification versus slow freezing. In Experiment 1, non-selected presumptive zygotes were randomly allocated to four medium treatments without co-culture: (1) SOF + 5% FCS for 9 days; (2) KSOM + 0.1% BSA for 4 days and then KSOM + 1% BSA to Day 9; (3) SOF + 5% FCS for 4 days and then KSOM + 1% BSA to Day 9; and (4) KSOM + 0.1% BSA for 4 days and then SOF + 5% FCS to Day 9. Treatment 4 (sequential KSOM-SOF culture system) improved (P > 0.05) morulae (47%), early blastocysts (26%), Day-7 blastocysts (36%), cell numbers, as well as total hatching rate (79%) compared to KSOM alone (Treatment 2). Embryos cultured in KSOM + BSA alone developed slowly and most of them hatched late on Day 9, compared to other treatments. In Experiment 2, the sequential KSOM-SOF culture system was used and Day-7 blastocysts were subjected to following cryopreservation comparison: (1) vitrification (VS3a, 6.5 M glycerol); or (2) slow freezing (1.36 M glycerol). Warmed embryos were cultured in SOF with 7.5% FCS. Higher embryo development and hatching rates (P < 0.05) were obtained by vitrification at 6h (71%), 24h (64%), and 48h (60%) post-warming compared to slow freezing (48, 40, and 31%, respectively). Following transfer of vitrified embryos to synchronized recipients, a 30% pregnancy rate was obtained. In conclusion, replacing KSOM with SOF after 4 days of culture produced better quality blastocysts. Vitrification using VS3a may be used more effectively to cryopreserve in vitro produced embryos than the conventional slow freezing method.  相似文献   

17.
In order to evaluate the dependence of the embryo on new mRNA synthesis during the period leading to blastulation, quantitative and qualitative aspects of protein synthesis in developing mouse morulae were investigated using α-amanitin, an inhibitor of RNA polymerase II. Only 1 of 423 early morulae cultured for 27 hr in the presence of 11 μg/ml α-amanitin cavitated, although most progressed as far as fully compacted morulae. About two-thirds of the untreated embryos cavitated during the same period. Incorporation of [35S]methionine into protein was measured at 3- or 4-hr intervals over a 24-hr period and showed a two- to fivefold increase in control embryos. This increase was blocked in the α-amanitin-treated group although initial levels of incorporation were maintained. Total uptake of the amino acid appeared to be unaffected by the inhibitor. RNA synthesis, as measured by [3H]uridine incorporation over the same period, was reduced by between 5 and 52%, and the preblastulation surge in RNA synthesis was also blocked by α-amanitin. Two-dimensional polyacrylamide gel electrophoresis of labeled polypeptides synthesized by the embryos after 24-hr incubation in the presence or absence of the inhibitor revealed three distinct classes of polypeptide. The majority of polypeptides continued to be synthesized in the presence of α-amanitin whereas a small number of polypeptides, the synthesis of which would normally have increased during the development of the morula to the blastocyst, were prevented from doing so. A few polypeptides which normally cease to be synthesized over this period continued to be synthesized in the presence of α-amanitin. It is concluded that, while most of the proteins detectable at the morula stage are synthesized on mRNA templates of relatively long translational life, the general surge in protein synthesis, including the increased synthesis of a few species of polypeptide, are dependent on continuous translational activity.  相似文献   

18.
Energy substrate preferences of bovine cleavage-stage embryos produced by in vitro maturation and in vitro fertilization were examined in a chemically-defined (protein-free) culture medium modified hamster embryo culture medium-3, (mHECM3). Few inseminated ova cleaved without energy substrates. Glucose and/or glutamine could not support embryo development, but lactate alone was effective (37% 5–8-cells), equivalent to complex medium TCM-199 (44%). Addition of 11 selected amino acids to lactate increased embryo cleavages, although this treatment was not significantly different from pyruvate alone. Addition of glucose to lactate or to pyruvate depressed development. Lactate + amino acids was significantly better than TCM-199 (54% and 26% ≤8-cells, respectively). Blastocyst development was evaluated after transferring ≤8-cell embryos into a complex medium (TCM-199) containing serum. Cleavage-stage embryos produced with pyruvate alone or with lactate + amino acids yielded the highest proportions of blastocysts (36% and 41%, respectively, of inseminated ova). Between 33–63% of blastocysts derived from embryos that were initially developed in mHECM-3 supplemented with various substrates escaped from their zonae (hatched) depending on the treatment, but none of the embryos from the pyruvate + glucose combination hatched. This study shows that optimal energy substrates for bovine cleavage-stage embryo development can be determined using a chemically-defined culture medium, that a simple medium with selected substrates can support early development as well as or better than a complex medium, that a two-step culture system can be used to evaluate blastocyst development from these cleavage-stage embryos, and that timing and hatching of embryos may provide additional information about discriminating between the suitabilities of different substrates for early embryo development. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The effects of aphidicolin and α-amanitin on DNA synthesis by preimplantation mouse embryos were studied. It was found that both blastocyst and 8-cell embryos showed marked inhibition of 3H-thymidine incorporation into DNA by aphidicolin at concentrations of 20–50 μg/ml. However, aphidicolin did not inhibit the conversion of morula embryos to blastocyst embryos, although aphidicolin-treated blastocysts lost their blastocoel and collapsed into a compact form after prolonged exposure to the drug. Both 8-cell and blastocyst embryos were found to be susceptible to inhibition of DNA synthesis by α-amanitin.  相似文献   

20.
Sequential culture and coculture are two methods of improving the development of preimplantation embryos in vitro. Direct comparison of the efficiency of these methods is limited. Proliferation and apoptosis determine the total number of blastomere in preimplantation embryo, which is a sensitive parameter for evaluation of the development of embryo in vitro. In this study, we compared the proliferation and apoptosis of mouse embryo in different culture media, including CZB, KSOM, MTF, G1.2/G2.2 sequential culture media, and in human oviductal cell coculture. Sequential culture using G1.2/G2.2 was superior to KSOM, MTF, and CZB/CZB + G with respect to the formation of 3-4 cell embryos, morula, and blastocyst. G1.2/G2.2 cultured blastocyst had significantly more proliferating blastomeres and higher total cell number per blastocyst than those cultured in KSOM or CZB/CZB + G. Compared to embryos cultured in G1.2/G2.2, embryos cocultured in G1.2/G2.2 hatched more frequently. Cocultured blastocysts also had significantly higher percentage of proliferating cell and lower percentage of apoptotic cell per blastocyst than those cultured in G1.2/G2.2. It was concluded that G1.2/G2.2 facilitated the proliferation of blastomere whilst human oviductal cell coculture suppressed apoptosis in addition to stimulating proliferation of blastomere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号