首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isocaloric modification in the ratio of dietary polyunsaturated-to-saturated fatty acids influences intestinal uptake of actively and passively transported nutrients. This study was undertaken to determine which dietary fatty acid was responsible for these alterations in absorption. Adult female rats were fed isocaloric semisynthetic diets high in palmitic and stearic acids (SFA), oleic acid (OA), linoleic acid (LA), or linolenic acid (LNA). An in vitro technique was used to measure the uptake of varying concentrations of glucose as well as a series of fatty acids and cholesterol. Jejunal uptake of 40 mM glucose was highest in rats fed SFA and lowest in those fed LA; ileal glucose uptake was similar in OA, LA, and LNA, but was lowest in SFA. Jejunal uptake of medium-chain fatty acids (8:0-12:0) was higher in OA than in other diet groups; ileal uptake of medium-chain fatty acids was unaffected by diet. Jejunal and ileal uptake of 18:2 was higher in LNA than in SFA or OA; the uptake of the other long-chain saturated or unsaturated fatty acids was unchanged by diet. The ileal but not the jejunal uptake of cholesterol was increased in LA as compared with SFA or OA, and reduced in LNA as compared with LA. These transport changes were not explained by differences in the animals' food consumption, body weight gain, intestinal mass, or mucosal surface area. We postulate that these diet-induced transport alterations may be mediated via changes in brush border membrane phospholipid fatty acyl composition. Thus, intestinal transport of nutrients may be varied by isocaloric changes in the dietary content of individual fatty acids.  相似文献   

2.
Some studies have shown that dietary intake of polyunsaturated fatty acids of the n-3 series may have inhibitory effect on the growth of tumor cells both in vivo and in vitro. However, the cellular and molecular mechanisms by which n-3 fatty acids reduce the growth of tumor cells remain poorly understood. In the present studies, we compared the potency of a variety of n-3 and n-6 fatty acids in modulating the apoptotic cell death in HT-29 colon cancer cells. Of all fatty acids examined, we found that docosahexaenoic acid (22:6n-3; DHA) is a potent inducer of apoptosis in a time- and dose-dependent manner. Indomethacin, a cyclooxygenase inhibitor, is ineffective in blocking the apoptosis induced by DHA, suggesting that DHA-induced apoptosis in HT-29 cells is not mediated through the cyclooxygenase pathway. In contrast, the DHA-induced apoptosis is partially reversed by a synthetic antioxidant, butylated hydroxytoluene, indicating that lipid peroxidation may be involved in apoptotic signaling pathway induced by DHA. DHA treatment decreased bcl-2 levels in association with apoptosis, whereas bax levels remained unchanged. These results suggest that decreased expression of bcl-2 by DHA might increase the sensitivity of cells to lipid peroxidation and to programmed cell death.  相似文献   

3.
The aim of this study was to analyze the effects of a polyunsaturated n-6 high-fat diet on rat DMBA-induced breast cancer at different stages of the carcinogenesis and to investigate if changes in the tumor fatty acid composition are one of the mechanisms by which dietary lipids could exert their effects. 14 fatty acids were evaluated in 6 lipid fractions. The results firstly showed that this high-fat diet stimulated the malignant mammary tumor growth, mainly all in the promotion group. The tumor lipid analysis indicated: 1) that each lipid fraction presented distinct major fatty acids (>5%) which were not the most abundant in the diet, except in the case of the triacylglicerides, suggesting the different resistance to dietary fatty acid modification of the tumor lipid fractions; 2) a higher arachidonic acid content in the fractions with less linoleic acid, above all in phospholipids, particularly in the phosphatidylethanolamine, indicating a different efficiency of conversion; 3) the three most abundant fatty acids in the dietary lipid (18:2n-6, 18:1n-9 and 16:0) were those which essentially displayed the differences between groups; thus, the high-fat diet changed the tumor lipid profile, increasing the 18:2n-6 relative content and decreasing that of the 18:1n-9; differences were significant in phosphatidylcholine, free fatty acids and triacylglycerides. Any change was obtained in the phosphatidylinositol. The greatest number of differences was found in the promotion group. Taken as a whole, our results suggest the different roles of lipid fractions in breast cancer cells and an association between cancer malignancy and the content of linoleic and oleic acids.  相似文献   

4.
Barramundi is a commercially farmed fish in Australia. To examine the potential for barramundi to metabolise dietary α-linolenic acid (ALA, 18:3 n-3), the existence of barramundi desaturase enzymes was examined. A putative fatty acid Δ6 desaturase was cloned from barramundi liver and expressed in yeast. Functional expression revealed Δ6 desaturase activity with both the 18 carbon (C(18)) and C(24) n-3 fatty acids, ALA and 24:5 n-3 as well as the C(18) n-6 fatty, linoleic acid (LA, 18:2 n-6). Metabolism of ALA was favoured over LA. The enzyme also had Δ8 desaturase activity which raises the potential for synthesis in barramundi of omega-3 (n-3) long chain polyunsaturated fatty acids from ALA via a pathway that bypasses the initial Δ6 desaturase step. Our findings not only provide molecular evidence for the fatty acid desaturation pathway in the barramundi but also highlight the importance of taking extracellular fatty acid levels into account when assessing enzyme activity expressed in Saccharomyces cerevisiae.  相似文献   

5.
Epidemiological studies suggest that dietary polyunsaturated fatty acids (PUFA) may influence breast cancer progression and prognosis. In order to study potential mechanisms of action of fatty acid modulation of tumor growth, we studied, in vitro, the influence of n-3 and n-6 fatty acids on proliferation, cell cycle, differentiation and apoptosis of MCF-7 human breast cancer cells. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) inhibited the MCF-7 cell growth by 30% and 54%, respectively, while linoleic acid (LA) had no effect and arachidonic acid (AA) inhibited the cell growth by 30% (p < 0.05). The addition of vitamin E (10uM) to cancer cells slightly restored cell growth. The incubation of MCF-7 cells with PUFAs did not alter the cell cycle parameters or induce cell apoptosis. However, the growth inhibitory effects of EPA, DHA and AA were associated with cell differentiation as indicated by positive Oil-Red-O staining of the cells. Lipid droplet accumulation was increased by 65%, 30% and 15% in the presence of DHA, EPA and AA, respectively; (p < 0.05). These observations suggest that fatty acids may influence cellular processes at a molecular level, capable of modulating breast cancer cell growth.  相似文献   

6.
Over the past few years, we have shown that the surge of melatonin in the circulation during darkness represents a potent oncostatic signal to tissue-isolated rat hepatoma 7288CTC, which is an ER+ adenocarcinoma of the liver. This oncostatic effect occurs via a melatonin receptor-mediated suppression of tumor cAMP production that leads to a suppression of the tumor uptake of linoleic acid (LA), an essential fatty acid with substantial oncogenic properties. The ability of LA to promote cancer progression is accomplished by its intracellular metabolism to 13-hydroxyoctadecadienoic acid (13-HODE) which amplifies the activity of the epidermal growth factor receptor/mitogen-activated protein kinase pathway leading to cell proliferation. By blocking tumor LA uptake, melatonin effectively blocks the production of 13-HODE and thus, markedly attenuates tumor growth. A similar effect of melatonin is observed in tissue-isolated, ER+ MCF-7 human breast cancer xenografts and nitrosomethylurea (NMU)-induced rat mammary cancers. When male rats bearing tissue-isolated hepatomas are exposed either to constant bright light (300 lux) or dim light (0.25 lux) during the dark phase of a 12L:12D photoperiod, the latency to onset was significantly reduced while the growth of tumors was markedly increased over a 4 wk period as compared with control tumors in 12L:12D-exposed rats. In constant light- and dim light during darkness-exposed rats, melatonin levels were completely suppressed while tumor growth, LA uptake and 13-HODE production were markedly increased. Similar results were obtained in constant bright light-exposed female rats bearing tissue-isolated NMU-induced mammary cancers or MCF-7 human breast cancer xenografts. To date, these studies provide the most definitive experimental evidence that light exposure during darkness increases the risk of cancer progression via elimination of the nocturnal melatonin signal and its suppression of tumor LA uptake and metabolism to 13-HODE.  相似文献   

7.
Melatonin and eicosapentaenoic and 10t,12c-conjugated linoleic acids suppress the growth-stimulating effects of linoleic acid (LA) and its metabolism to the mitogenic agent 13-(S)-hydroxyoctadecadienoic acid (13-(S)-HODE) in established rodent tumors and human cancer xenografts. Here we compared the effects of these 3 inhibitory agents on growth and LA uptake and metabolism in human FaDu squamous cell carcinoma xenografts perfused in situ in male nude rats. Results demonstrated that these agents caused rapid inhibition of LA uptake, tumor cAMP content, 13-(S)-HODE formation, extracellular signal-regulated kinase p44/ p42 (ERK 1/2) activity, mitogen-activated protein kinase kinase (MEK) activity, and [3H]thymidine incorporation into tumor DNA. Melatonin's inhibitory effects were reversible with either the melatonin receptor antagonist S20928, pertussis toxin, forskolin, or 8-bromoadenosine-cAMP, suggesting that its growth-inhibitory effect occurs in vivo via a receptor-mediated, pertussis-toxin-sensitive pathway.  相似文献   

8.
Effects of dietary conjugated linoleic acid (CLA, 1% mixed isomers) on n-6 long-chain polyunsaturated fatty acid (LCPUFA) oxidation and biosynthesis were investigated in liver and brain tissues of neonatal piglets. Fatty acid β-oxidation was measured in tissue homogenates using [1-14C]linoleic acid (LA) and -arachidonic acid (ARA) substrates, while fatty acid desaturation and elongation were traced using [U-13C]LA and GC-MS. Dietary CLA had no effect on fatty acid β-oxidation, but significantly decreased n-6 LCPUFA biosynthesis by inhibition of LA elongation and desaturation. Differences were noted between our 13C tracer assessment of desaturation/elongation and simple precursor-product indices computed from fatty acid composition data, indicating that caution should be exercised when employing the later. The inhibitory effects of CLA on elongation/desaturation were more pronounced in pigs fed a low fat diet (3% fat) than a high fat diet (25% fat). Direct elongation of linoleic acid to C20:2n-6 via the alternate elongation pathway might play an important role in n-6 LCPUFA synthesis because more than 40% of the synthetic products of [U-13C]LA accumulated in [13C]20:2n-6. Overall, the data show that dietary CLA shifted the distribution of the synthetic products of [U-13C]LA between elongation and desaturation in liver and decreased the total synthetic products of [U-13C]LA in brain by inhibiting LA elongation to C20:2n-6. The impact of CLA on brain LCPUFA metabolism of the developing neonate merits consideration and further investigation.  相似文献   

9.
The intake of the essential fatty acid precursor α-linolenic acid (ALA) contributes to ensure adequate n-3 long-chain polyunsaturated fatty acid (LC-PUFA) bioavailability. Conversely, linoleic acid (LA) intake may compromise tissue n-3 PUFA status as its conversion to n-6 LC-PUFA shares a common enzymatic pathway with the n-3 family. This study aimed to measure dietary ALA and LA contribution to LC-PUFA biosynthesis and tissue composition. Rats were fed with control or experimental diets moderately enriched in ALA or LA for 8 weeks. Liver Δ6- and Δ5-desaturases were analyzed and FA composition was determined in tissues (red blood cells, liver, brain and heart). Hepatic Δ6-desaturase activity was activated with both diets, and Δ5-desaturase activity only with the ALA diet. The ALA diet led to higher n-3 LC-PUFA composition, including DHA in brain and heart. The LA diet reduced n-3 content in blood, liver and heart, without impacting n-6 LC-PUFA composition. At levels relevant with human nutrition, increasing dietary ALA and reducing LA intake were both beneficial in increasing n-3 LC-PUFA bioavailability in tissues.  相似文献   

10.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

11.
Stearidonic acid (STA; 18:4n-3) and γ-linolenic acid (GLA; 18:3n-6) are significant intermediates in the biosynthetic pathway for the very-long-chain polyunsaturated fatty acids of eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6), respectively. To develop a sustainable system for the production of dietary polyunsaturated fatty acids, we focused on the action of the enzyme delta 6-desaturase (D6DES) on the essential acids, linoleic acid (LA; 18:2n-6) and α-linolenic acid (ALA; 18:3n-3). A 1,335-bp full-length cDNA encoding D6DES (McD6DES) was cloned from Muraenesox cinereus using degenerate PCR and RACE-PCR methods. To investigate the enzymatic activity of McD6DES in the production of n-6 and n-3 fatty acids, a recombinant plasmid expressing McD6DES (pYES-McD6DES) was transformed into and expressed in Saccharomyces cerevisiae. The exogenously expressed McD6DES produced GLA and STA at conversion rates of 14.2% and 45.9%, respectively, from the exogenous LA and ALA substrates. These results indicate that McD6DES is essentially a delta 6-desaturase involved in very-long-chain polyunsaturated fatty acid synthesis.  相似文献   

12.
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07–17.1 en%) and ALA (0.02–12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1–3 en% ALA and 1–2 en% LA but was suppressed to basal levels (~2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).  相似文献   

13.
Studies with animal models in vivo as well as with animal and human tumor cells in vitro suggest that specific fatty acids could reduce breast tumorigenesis. The most striking dietary fatty acid studies in animal models that show promise for reduction of breast cancer risk in humans are with conjugated linoleic acids (CLA) and n-3 fatty acids. Although a number of mechanisms have been proposed, the specific target of those fatty acids is not yet known. We sought to determine whether the effects of those fatty acids on terminally differentiated tumor cell seen could be due to alteration of breast cancer stem cells. The isomers, cis9, trans11-CLA and trans10, cis12-CLA, and the n-3 fatty acids, docosahexaenoic and eicosapentaenoic, reduced the proliferation of, and had increased toxicity towards, mammary tumor initiating cells. One mechanism involved in the effect of n-3 fatty acids may be due to alteration of the profile of prostaglandins. These results indicate that select fatty acids may be useful for preventing or reducing the risk of breast cancer as they may target the tumor initiating cell.  相似文献   

14.
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.  相似文献   

15.
The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n-6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) and PGF2alpha. The 15-lipoygenase is very active in this tissue and catalyzes the transformation of 20-carbon AA into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). Similarly, the epidermal 15-lipoxygenase also catalyzes the transformation of 18-carbon LA and 20-carbon dihomo-gamma-linolenic acid (DGLA) to 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatrienoic acid (15-HETrE), respectively. The monohydroxy fatty acids are incorporated in phospholipids which undergo catalysis to yield substituted-diacylglycerols (13-HODE-DAG) and 15-HETrE-DAG) which exert anti-inflammatory/antiproliferative effects on the skin.  相似文献   

16.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

17.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

18.
An important question for mammalian nutrition is the relative efficiency of C18 versus C20 essential fatty acids (EFAs) for supporting the tissue composition of n-3 and n-6 pathway end products. One specific question is whether C22 EFAs are made available to tissues more effectively by dietary alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) or by dietary eicosapentaenoic acid (20:5n-3) and dihomo-gamma-linolenic acid (20:3n-6). To address this question in a direct manner, four stable isotope compounds were given simultaneously in a novel paradigm. A single oral dose of a mixture of 2H5-18:3n-3, 13C-U-20:5n-3, 13C-U-18:2n-6, and 2H5-20:3n-6 was administered to rats given a defined diet. There was a preferential in vivo conversion of arachidonic acid (20:4n-6) to docosatetraenoic acid (22:4n-6) and of 22:4n-6 to n-6 docosapentaenoic acid (22:5n-6) when the substrates originated from the C18 precursors. However, when the end products docosahexaenoic acid (22:6n-3) or 22:5n-6 were expressed as the total amount in the plasma compartment divided by the dosage, this parameter was 11-fold greater for 20:5n-3 than for 18:3n-3 and 14-fold greater for 20:3n-6 than for 18:2n-6. Thus, on a per dosage basis, the total amounts of n-3 and n-6 end products accreted in plasma were considerably greater for C20 EFA precursors relative to C18.  相似文献   

19.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

20.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号