首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four long-term embryogenic lines of Asparagus officinalis were co-cultured with the hypervirulent Agrobacterium tumefaciens strain AGL1Gin carrying a uidA gene and an nptII gene. 233 embryogenic lines showing kanamycin resistance and -glucuronidase (GUS) activity were obtained. Transformation frequencies ranged from 0.8 to 12.8 transformants per gram of inoculated somatic embryos, depending on the line. Southern analysis showed that usually 1 to 4 T-DNA copies were integrated. Regenerated plants generally exhibited the same insertion pattern as the corresponding transformed embryogenic line. T1 progeny were obtained from crosses between 6 transformed plants containing 3 or 4 T-DNA copies and untransformed plants. They were analysed for GUS activity and kanamycin resistance. In three progenies, Mendelian 1:1 segregations were observed, corresponding to one functional locus in the parent transgenic plants. Southern analysis confirmed that T-DNA copies were inserted at the same locus. Non-Mendelian segregations were observed in the other three progenies. T2 progeny also exhibited non-Mendelian segregations. Southern analysis showed that GUS-negative and kanamycin-sensitive plants did not contain any T-DNA, and therefore inactivation of transgene expression could not be responsible for the abnormal segregations.  相似文献   

2.
Although many male-sterile mutants have been identified inArbidopsis thaliana, few of the corresponding genes have been cloned. In order to facilitate cloning of a male sterility gene, 23 of Feldmann's T-DNA-generated, reduced-fertility lines were screened to identify a tagged male-sterile mutation. Malesterile mutants were identified, as well as mutants that were both male and female sterile. Segregation of the kanamycin marker gene in the progeny of 15 of these lines was studied. Forty percent had functional T-DNAs (encoding resistance to kanamycin) inserted at a single locus, the remainder segregating for two or more functional T-DNA inserts. Linkage between T-DNA inserts and mutant phenotype was tested for six lines. In three of these lines, mutations were not linked to a T-DNA insert. In three lines, the mutation segregated with a T-DNA insert.  相似文献   

3.
Activation tagging is a powerful technique for generating gain-of-function mutants in plants. We developed a new vector system for activation tagging of genes in “transformed hairy roots”. The binary vector pHR-AT (Hairy Root-Activation Tagging) and its derivative pHR-AT-GFP contain a cluster of rol (rooting locus) genes together with the right border facing four tandem repeats of the cauliflower mosaic virus (CaMV) 35S enhancer element on the same T-DNA. Transformation experiments using Arabidopsis, potato, and tobacco as model plants revealed that upon inoculating plants with Agrobacterium tumefaciens harboring these vectors, a large number of independently transformed roots could be induced from explants within a short period of time, and root culture lines were subsequently established. Molecular analyses of the pHR-AT-GFP-transformed Arabidopsis lines showed that expression of the genes adjacent to the T-DNA insertion site was significantly increased. This system may facilitate application of the activation-tagging approach to plant species that are recalcitrant to the regeneration of transgenic plants. High-throughput metabolic profiling of activation-tagged root culture lines will offer opportunities for identifying regulatory or biosynthetic genes for the production of valuable secondary metabolites of interest.  相似文献   

4.
Forty-four independent transformed tobacco plants were obtained from a cocultivation experiment with Agrobacterium tumefaciens strains carrying modified Ti-plasmids. The transformed plants were either self-fertilized or crossed with nontransformed plants or with other transformed plants. The segregation of a phenotypic marker (kanamycin resistance) in the progenies of these plants was determined. In 40 cases out of 44, the segregation of the kanamycin resistance marker is consistent with Mendelian genetics. Among these 40 clones, 35 contain a single kanamycin resistance locus. The five others segregate two independent resistance loci. In two of the single insert clones, the segregation ratio after selfing indicates that the T-DNA insertion may have caused a recessive lethal mutation.  相似文献   

5.
Genetic analysis with T-DNA mutants often brings difficulties resulting from instability of the transgenic phenotype. In this work three different Arabidopsis thaliana T-DNA embryonic lethals and one T-DNA morphological mutant were analyzed in F2 progeny after 15 different crosses with marker lines for individual chromosomes. F2 analysis of 44 segregation ratios revealed segregation distortion of similar character consisting in abnormal excess of nontransgenic plants to the detriment of transgenic ones. We quantified this phenotypic drift (d) on the basis of phenotypic ratios given the respective formulas. The d values indicate the rate of F1 gametes which loose the T-DNA mutation or ability of its expression. The obtained d value were relatively high, 0.4 to 0.9 for individual crosses. It makes the standard recombination analysis with insertional mutants very problematic or even impossible.  相似文献   

6.
Summary The genomic distribution and genetic behavior of DNA sequences introduced into the tomato genome by Agrobacterium tumefaciens were investigated in the backcross progeny of 10 transformed Lycopersicon esculentum x L. pennellii hybrids. All transformants were found to represent single locus insertions based on the co-segregation of restriction fragments corresponding to the T-DNA left and right border sequences in the backcross progeny. Isozyme and restriction fragment length polymorphism (RFLP) markers were used to test linkage relationships of the insertion in each backcross family. The T-DNA inserts in 9 of the 10 transformants were mapped in relation to one or more of these markers, and each mapped to a different chromosomal location. Because only one insertion did not show linkage with the markers employed, it must be located somewhere other than the genomic regions covered by the markers assayed. We conclude that Agrobacterium-mediated insertion in the Lycopersicon genome appears to be random at the chromosomal level. No discrepancies were found between the T-DNA genotype and the nopaline phenotype in the 322 backcross progeny of the nopaline positive transformants. Backcross progeny of two nopaline negative transformants showed incomplete correspondence between the T-DNA genotype and the kanamycin resistance phenotype. No alteration of T-DNA was observed in progeny showing a discrepancy between T-DNA and kanamycin resistance. However, two kanamycin resistant progeny plants of one of these two transformants possessed altered T-DNA restriction patterns, indicating genetic instability of the T-DNA in this transformant.Journal article no. 1223 of the New Mexico Agricultural Experiment Station  相似文献   

7.
In planta Agrobacterium-mediated transformation combined with a soil-based herbicide selection for transgenic plants was used to recover large numbers of transgenic Arabidopsis plants for functional genomic studies. A tissue-culture-free system for generating transgenic plants was achieved by infiltrating Arabidopsis plants with Agrobacterium tumefaciens harboring a binary T-DNA vector containing the phosphinothricin acetyltransferase gene from Streptomyces hygroscopicus, and by selecting transgenic Arabidopsis growing in soil by foliar application of the herbicide Finale (phosphinothricin). Analysis of herbicide-resistant plants indicated that all were transgenic and that the T-DNA transformation process occurred late during flower development, resulting in a preponderance of independently derived T-DNA insertions. T-DNA insertions were usually integrated in a concatenated, rearranged form, and using linkage analysis, we estimated that T1 plants carried between one and five T-DNA loci. Using pooling strategies, both DNA and seed pools were generated from about 38,000 Arabidopsis plants representing over 115,000 independent T-DNA insertions. We show the utility of these transgenic lines for identifying insertion mutations using gene sequence and PCR-based screening. Electronic Publication  相似文献   

8.
Summary Agrobacterium-mediated transformation of Arabidopsis, ecotype ‘Estland’, was established from root explants using kanamycin selection. Continuous light during callus and shoot induction phases was promotive for shoot regeneration, as compared to light/dark cycles. Use of optimized conditions for transformation led to the formation of kanamycin-resistant calluses (up to 77%) and transformed plantlets at a frequency of up to 45%. Southern analysis showed the presence of 1.2. or more T-DNA inserts in 33%, 50%, and 17% of the primary transformants, respectively. Mendelian, as well as non-Mendelian, inheritance patterns were obtained upon screening the progeny (T1) of various transformants for the expression of gus and nptII genes; the analysis of some of these transformants at the molecular level also corroborated the Mendelian inheritance pattern. Moreover, genotypes of the T1 progeny could be predicted on the basis of T2 progeny analysis.  相似文献   

9.
The map positions of a set of eight T-DNA insertions in theArabidopsis genome have been determined by using closely linked visible markers. The insertions are dispersed over four of the five chromosomes. Each T-DNA insert contains one or more of the chimeric marker genes neomycin phosphotransferase (neo), hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar),-glucuronidase (gusA) and indole-3-acetamide hydrolase (iaaH). Theneo, hpt andbar marker genes are dominant in a selective germination assay or when used as DNA markers in a polymerase chain reaction. These dominant markers will allow recombinants to be discerned in a germinating F2 population, one generation earlier than with a conventional recessive marker. The transgenic marker lines will speed up and simplify the isolation of recombinants in small genetic intervals, a rate-limiting step in positional cloning strategies. The transgenic lines containing thehpt marker will also be of interest for the isolation of deletion mutants at the T-DNA integration sites.  相似文献   

10.
In a genetic screen for Arabidopsismutants displaying pleiotropic alterations in vegetative development and stress responses we have identified a T-DNA insertion mutation in the Cap Binding Protein 20 (CBP20) gene, that encodes the 20kDa subunit of the nuclear mRNA cap binding complex (nCBC). Plants homozygous for the recessive cbp20 mutation show mild developmental abnormalities, such as serrated rosette leaves, delayed development and slightly reduced stature. Loss of the cbp20 function also confers hypersensitivity to abscisic acid during germination, significant reduction of stomatal conductance and greatly enhanced tolerance to drought. Expression of the wild type cDNA by CaMV35S promoter provides full genetic complementation of the pleiotropic cbp20phenotype. Phenotypic characteristics of the cbp20 mutant are very similar to those of recently described abh1mutant that is defective in the 80kDa subunit of nCBC. Our data thus confirm that both genes are dedicated to the same function. CBP20 provides a new target for breeding efforts that aim at the improvement of drought tolerance in plants. Our results also show that screening for pleiotropic phenotypes in mutant plant populations may be a fruitful strategy to isolate genes for agronomically important traits.  相似文献   

11.
Leaf strips from cocoa tree (Theobroma cacao L.) clones ICS-16 and SIC-5 were cocultivated with the supervirulent Agrobacterium tumefaciens strain A281-Kan. A281-Kan contains a wild-type Ti plasmid and an additional plasmid, pGPTV-Kan, which confers kanamycin resistance to transformed plant cells after integration and expression of the neomycin phosphotransferase II (nptII) gene. Transformed cells were selected on callusing medium containing 100 g ml-1 kanamycin. NptII assays confirmed that kanamycin-resistant cultures of ICS-16 and SIC-5 expressed the nptII gene, whereas control cultures did not. Genomic Southern blot analyses demonstrated single T-DNA insertions into ICS-16 and SIC-5. T-DNA/cocoa DNA border regions from transformed cultures were cloned and sequenced, revealing that in both transformed cell lines, the right T-DNA border was at the 5 end of the 25 bp right border repeat. Cocoa DNA probes from the T-DNA/cocoa DNA insertion sites were used in Southern blot analyses and showed that T-DNA from pGPTV-Kan had inserted into a unique region in ICS-16 and into a repetitive region in SIC-5. This study establishes that foreign genes can be inserted and expressed in cocoa using A. tumefaciens-mediated gene transfer.  相似文献   

12.
A T-DNA vector for plant transformation has been constructed in which the cloning site is located 9 bp from the right-border (RB) end and 27 bp from the left-border (LB) end. In this vector cloned DNA homologous to plant chromosomal sequences is located at the T-DNA termini, and will thus be exposed by even limited exonucleolysis in planta. The arabidopsis ADH (alcohol dehydrogenase) locus was mobilized from Agrobacterium, and integration into the recipient genome was studied. Despite the terminal location of ADH homology in this vector, the T-DNA integrated essentially at random in the Arabidopsis genome rather than at the endogenous ADH locus. T-DNA integration was blocked, however, when Arabidopsis telomeric sequences were added to the construct at each end of the ADH homology. Thus the predominant mode by which incoming T-DNA is integrated into the continuity of chromosomal DNA involves free DNA ends, but, in contrast to modes of recombination such as gap repair, does not involve extensive terminal DNA sequence homology.  相似文献   

13.
Summary The 200 kb Agrobacterium Ti-plasmid pTiT37 carries a 25 kb segment of T-DNA which it transfers to plant cells during crown-gall tumorigenesis. We have previously engineered into this T-DNA a pBR322-derived cloning vector which enabled us to rescue-clone full length T-DNA from the Ti-plasmid into a 36 kb MINI-Ti plasmid. We report here the deletion of oncogenes from MINI-Ti to produce Micro-Ti containing the nopaline synthase gene and the ampicillin resistance gene and origin of replication of pBR322, flanked by left and right T-DNA borders. Micro-Ti was recloned into the wide host range plasmid pRK290 and transformed into an A. tumefaciens strain carrying a helper plasmid that could supply Virulence (VIR) genes in trans. Using the octopine Ti-plasmid pTiB6-806 as a helper, transformed tobacco cells were obtained which produced both nopaline and octopine. Two cloned cell lines producing both opines were found to be hormone dependent and to produce fertile tobacco plants. We selfed one of these plants and found that the two opine markers segregated in the F1 progeny in a Mendelian fashion. This showed that the T-DNAs were not linked in the transformed plant genome. Southern blot analysis of the genomic DNA from the regenerated plant showed that only part of the (oncogenic) octopine T-DNA was present indicating that it had suffered a deletion in the auxin producing locus (tms region). Presence of the cytokinin autonomy locus presumably accounts for the abnormal rooting behavior of the F1 progeny seedlings containing this T-DNA.Abbreviations NAA Naphtalene acetic acid - IAA Indole-3-acetic acid - BA 6-benzylaminopurine - pCPA para-chlorophenoxyacetic acid Part of this work was presented for her doctoral thesis by A. JdF at the National Institute of Agronomy of Paris-Grignon, January 1983  相似文献   

14.
Summary A F1 hybrid of Petunia hybrida, heterozygous for at least one marker on each of the seven chromosomes, was transformed with a modified strain of Agrobacterium tumefaciens in which the phytohormone biosynthetic genes in the transferred DNA (T-DNA) were replaced with a NOS/NPTII/NOS chimeric gene and a wildtype nopaline synthase (NOS) gene. The chimeric gene, which confers kanamycin resistance, was used as selectable marker during the transformation process and the NOS gene was used as a scorable marker in the genetic studies. After plants had been regenerated from the transformed tissues, the transgenic plants that expressed both of these markers were backcrossed to the parental lines. The offspring were examined for the segregation of the NOS gene and the Petunia markers. Genetic mapping was thus accomplished in a single generation.By Southern hybridization analysis we confirmed the presence of the expected T-DNA fragments in the transformed plants. Four out of the six plants presented here, had just one monomeric T-DNA insertion. The sizes of the plant/T-DNA junction fragments suggest that the integration occurred in different sites of the Petunia genome. One transformant gave a more complicated hybridization pattern and possibly has two T-DNA inserts. Another transgenic plant was earlier reported (Fraley et al. 1985) to have two, possibly tandemly repeated T-DNAs.Data is presented on the genetic localization of the T-DNA inserts in six independently obtained transgenic plants. The T-DNA inserts in three plants were mapped to chromosome I. However, the distances between the NOS gene and the marker gene on this chromosome were significantly different. In another transgenic plant the NOS gene was coinherited with the marker on chromosome IV. Two other transgenic plants have the T-DNA insert on chromosome III. A three point cross enabled us to determine that both plants have the NOS gene distally located from the peroxidaseA (prxA) marker and both plants showed about 18% recombination. However, Southern hybridization analysis shows that the sizes of the plant/T-DNA junction fragments in these transgenic plants are different, thus suggesting that the integrations occurred in different sites.  相似文献   

15.
16.
Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T0 seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.  相似文献   

17.
The parthenocarpic fruit (pat) gene of tomato is a recessive mutation conferring parthenocarpy, which is the capability of a plant to set seedless fruits in the absence of pollination and fertilization. Parthenocarpic mutants offer a useful method to regulate fruit production and a suitable experimental system to study ovary and fruit development. In order to map the Pat locus, two populations segregating from the interspecific cross Lycopersicon esculentum × Lycopersicon pennellii were grown, and progeny plants were classified as parthenocarpic or wild-type by taking into account some characteristic aberrations affecting mutant anthers and ovules. Through bulk segregant analysis, we searched for both random and mapped AFLPs linked to the target gene. In this way, the Pat locus was assigned to the long arm of chromosome 3, as also confirmed by the analysis of a set of L. pennellii substitution and introgression lines. Afterwards, the Pat position was refined by using simple sequence repeats (SSRs) and conserved ortholog set (COS) markers mapping in the target region. The tightest COSs were converted into CAPS or SCAR markers. At present, two co-dominant SCAR markers encompassing a genetic window of 1.2 cM flank the Pat locus. Considering that these markers are orthologous to Arabidopsis genes, a positional cloning exploiting the tomato-Arabidopsis microsynteny seems to be a short-term objective.Communicated by F. Salamini  相似文献   

18.
To identify salt tolerance determinants, we screened for double mutants from a T-DNA tagged sos3-1 mutant population in the Arabidopsis Col-0 gl1 background. The shs1-1 (sodium hypersensitive) sos3-1 mutant was isolated as more sensitive to NaCl than sos3-1 plants. TAIL-PCR revealed that the introduced T-DNA was located 62 bp upstream of the initiation codon of an adenylate translocator-like protein gene on chromosome IV. SHS1 mRNA did not accumulate in shs1-1 sos3-1 plants although it accumulated in shoots of both sos3-1 and the wild type plants, indicating that this gene is inactive in the mutant. Genetic co-linkage analysis revealed that the mutation causing the phenotype segregated as a recessive, single gene mutation. This mutant showed altered sensitive responses to salt as well as to cold stress. It also demonstrated sugar sensitive and ABA insensitive phenotypes including enhanced germination, reduced growth, altered leaf morphology, and necrosis on leaves at an early growth stage. Sensitivity of sos3-1 shs1-1 root growth to LiCl, KCl, and mannitol was not significantly different from growth of sos3-1 roots. Further, expression of 35S::SHS1 in sos3-1 shs1-1 plants complemented NaCl and sugar sensitivity and partially restored the leaf morphology. G. Inan and F. Goto contributed equally in this work.  相似文献   

19.
Stable genetic transformation of Arabidopsis thaliana was achieved by simple in planta inoculation of Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBl121. The transformation procedure, which we call in planta transformation, involves severing of apical shoots at their bases, inoculation with Agrobacterium at the severed sites, and in planta generation of shoots from the severed sites. On average, 5.5% of the newly formed shoots produced transformed progenies. These progenies (T2 generation) contained T-DNA in the genome as examined by assaying the T-DNA encoded β-glucuronidase and kanamycin resistance and by genomic Southern blot analysis, the copy number of the T-DNAs in the Arabidopsis genome being single (33%) or multiple. The genetic behavior of the transformants examined at the T3 and T4 generations or with the F2 progenies of the outcrosses between transformants and wild-type plants showed that most of the inserted T-DNA are inherited in a Mendelian fashion. This procedure provides a new approach for simple and efficient transformation of A. thaliana, obviating the need for plant regeneration from tissue explants in vitro.  相似文献   

20.
A simple strategy to identify and isolate new promoters suitable for driving the expression of selectable marker genes is described. By employing a Brassica napus hypocotyl transformation protocol and a promoterless gus::nptII tagging construct, a series of 20 kanamycin-resistant tagged lines was produced. Most of the regenerated plants showed hardly any GUS activity in leaf, stem and root tissues. However, expression was readily restored in callus tissue induced on in vitro leaf segments. Genomic sequences upstream of the gus::nptII insertions were isolated via plasmid rescue. Three clones originating from single copy T-DNA lines were selected for further evaluation. The rescued plasmids were cloned as linear fragments in binary vectors and re-transformed to Brassica napus hypocotyl and Solanum tuberosum stem segments. The new sequences maintained their promoter activity, demonstrated by transient and stable GUS activity after transformation. Furthermore, the promoters provided sufficient expression of the nptII gene to yield transgenic plants when using kanamycin as selective agent. Database searching (BLASTN) revealed that the promoters have significant homology with three Arabidopsis BAC clones, one Arabidopsis cDNA and one Brassica napus cDNA. The results presented in this paper illustrate the strength of combined methods for identification, isolation and testing of new plant promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号