共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M. De Angelis G. Vinciguerra A. Gasbarri C. Pacitti 《European journal of applied physiology and occupational physiology》1998,78(2):121-127
The aim of this research was to investigate the physiological responses and, in particular, the participation of lactic acid
anaerobic metabolism in aerobic dance, which is claimed to be pure aerobic exercise. In contrast to previous studies, that
have put subjects in very unfamiliar situations, the parameters were monitored in the familiar context of gymnasium, practice
routine and habitual instructor. A group of 30 skilled fairly well-trained women performed their usual routine,␣a combination
of the two styles: low (LI) and high impact (HI), and were continuously monitored for heart rate (HR) and every 8 min for
blood lactate concentration ([La−]b). Of the group, 15 were tested to determine their maximal aerobic power (V˙O2max) using a cycleergometer. They were also monitored during the routine for oxygen uptake (V˙O2) by a light telemetric apparatus. The oxygen pulses of the routine and of the corresponding exercise intensity in the incremental
test were not statistically different. The mean values in the exercise session were: peak HR 92.8 (SD 7.8)% of the subject's
maximal theoretical value, peak V˙O2 99.5 (SD 12.4)% of V˙O2max, maximal [La−]b 6.1 (SD 1.7) mmol · l−l, and mean 4.8 (SD 1.3) mmol · l−l. Repeated measures ANOVA found statistically significant differences between the increasing [La−]b values (P < 0.001). In particular, the difference between the [La−]b values at the end of the mainly LI phase and those of the LI-HI combination phase, and the difference between the samples
during the combination LI-HI phase were both statistically significant (both P= 0.002 and P= 0.002). The similar oxygen pulses confirmed the validity of the present experiment design and the reliability of HR monitoring
in this activity. The HR, V˙O2 and, above all, the increase of [La−]b to quite high values, showing a non steady state, demonstrated the high metabolic demand made by this activity that involved
lactic acid metabolism at a much higher level than expected.
Accepted: 23 September 1997 相似文献
3.
By complementary use of freeze-etching and scanning electron microscopy techniques, the morphology of cytoplasmic membrane and mitochondria of bakers' yeast ( Saccharomyces cerevisiae ) was shown to be sensitive to momentary lack of dissolved oxygen in fed-batch growth medium. Cells grown under constant excess oxygenation had more invaginations on their cytoplasmic membranes and showed larger mitochondria as assessed from the dimensions of their giant mitochondria. 相似文献
4.
Tumors and multicellular tumor spheroids can develop gradients in oxygen concentration, glucose concentration, and extracellular pH as they grow. In order to calculate these gradients and assess their impact on tumor growth, it is necessary to quantify the effect of these variables on tumor cell metabolism and growth. In this work, the oxygen consumption rates, glucose consumption rates, and growth rates of EMT6/Ro mouse mammary tumor cells were measured at a variety of oxygen concentrations, glucose concentrations, and extracellular pH levels. At an extracellular pH of 7.25, the oxygen consumption rate of EMT6/Ro cells increased by nearly a factor of 2 as the glucose concentration was decreased from 5.5 mM to 0.4 mM. This effect of glucose concentration on oxygen consumption rate, however, was slight at an extracellular pH of 6.95 and disappeared completely at an extracellular pH of 6.60. The glucose consumption rate of EMT6/Ro cells increased by roughly 40% when the oxygen concentration was reduced from 0.21 mM to 0.023 mM and decreased by roughly 60% when the extracellular pH was decreased from 7.25 to 6.95. The growth rate of EMT6/Ro cells decreased with decreasing oxygen concentration and extracellular pH; however, severe conditions were required to stop cell growth (0.0082 mM oxygen and an extracellular pH of 6.60). Empirical correlations were developed from these data to express EMT6/Ro cell growth rates, oxygen consumption rates, and glucose consumption rates, as functions of oxygen concentration, glucose concentration, and extracellular pH. These empirical correlations make it possible to mathematically model the gradients in oxygen concentration, glucose concentration, and extracellular pH in EMT6/Ro multicellular spheroids by solution of the diffusion/reaction equations. Computations such as these, along with oxygen and pH microelectrode measurements in EMT6/Ro multicellular spheroids, indicated that nutrient concentration and pH levels in the inner regions of spheroids were low enough to cause significant changes in nutrient consumption rates and cell growth rates. However, pH and oxygen concentrations measured or calculated in EMT6/Ro spheroids where quiescent cells have been observed were not low enough to cause the cessation of cell growth, indicating that the observed quiescence must have been due to factors other than acidic pH, oxygen depletion, or glucose depletion. 相似文献
5.
Sabyasachi Bhattacharya Ashis SenGupta Tapas Kumar Basu 《World journal of microbiology & biotechnology》2002,18(3):285-288
Borzani's [(1994) World Journal of Microbiology and Biotechnology10, 475–476] idea of evaluation of absolute error affecting the 'maximum specific growth rate' (ESGR), calculated on the basis of the first and the last time points of the entire experimental time period, is generalized to the real-life situations where the relative errors of cell concentration cannot be assumed to be constant during the experiment. Visualizing the entire experimental time period as to comprise of several successive, mutually exclusive and exhaustive time intervals, we compute specific growth rates (SGRs) for each of these time intervals. Defining maximum of these SGR values as MSGR in contrast to Borzani's ESGR our aim is to study the effect of the expected absolute error on SGRs of different intervals. This will reveal the discrepancy between the true and observed MSGRs. Assuming the relative error distribution on (0,1) to be rectangular and symmetric truncated normal with mean at 0.5 and suitable variance, the expected values of the absolute errors are evaluated and numerically tabulated using the software packages MATHEMATICA and S-PLUS. Our results thus hold for situations involving varying relative errors where Borzani's results cannot be applied. A discussion with a concrete numerical example on the misidentification of the MSGR interval due to the effect of the random relative measuremental errors reveals to an experimental biologist that ignorance of this fact may lead to his/her entire experiment being futile. 相似文献
6.
Rodríguez FA Poyatos JM Reboleiro-Rivas P Osorio F González-López J Hontoria E 《Bioresource technology》2011,102(10):6013-6018
The performance of a wastewater bench-scale ultrafiltration membrane bioreactor (MBR) treatment plant using pure oxygen to supply the aerobic conditions for 95 days was studied. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 12 h and a sludge retention time of 39.91 days. Aeration represents its major power input; this is why the alpha-factor of the aeration and kinetic parameters (design parameters) were determined when the mixed liquid suspended solids (MLSS) was increased from 3420 to 12,600 mg/l in order to understand the system. An alpha-factor in the range 0.462-0.022 and the kinetic parameters measured with the respirometric method (KM of 73.954-3.647 mg/l, kd of 0.0142-0.104 day−1, kH of 0.1266-0.655 day−1, and the yield mean coefficient of 0.941) were obtained. Our study suggested significant changes in the behaviour of the biological system when the concentration of MLSS was increased. 相似文献
7.
H. Ziegler D. Meister I. J. Dunn H. W. Blanch T. W. F. Russell 《Biotechnology and bioengineering》1977,19(4):507-525
Oxygen transfer measurements using a dynamic method and evaluated with an appropriate mathematical model have been made on a tubular loop bioreactor. Correlations of the type used in tank systems are used to describe the influence of power and aeration rate on the mass transfer coefficient. Yeast cultures grown on hydrocarbon and glucose substrates show growth characteristics similar to conventional tank results. Model considerations for large-scale tubular fermentors allow for the prediction of the steady-state oxygen profiles and maximum reactor length. Combination with two-phase flow and oxygen transfer correlations yields a design procedure for commercial scale tubular loop fermentors. 相似文献
8.
9.
Laura Ellwein Margaret M. Samyn Michael Danduran Sheila Schindler-Ivens Stacy Liebham John F. LaDisaJr. 《Biomechanics and modeling in mechanobiology》2017,16(1):75-96
Image-based computational fluid dynamics (CFD) studies conducted at rest have shown that atherosclerotic plaque in the thoracic aorta (TA) correlates with adverse wall shear stress (WSS), but there is a paucity of such data under elevated flow conditions. We developed a pedaling exercise protocol to obtain phase contrast magnetic resonance imaging (PC-MRI) blood flow measurements in the TA and brachiocephalic arteries during three-tiered supine pedaling at 130, 150, and 170 % of resting heart rate (HR), and relate these measurements to non-invasive tissue oxygen saturation \((\hbox {StO}_{2})\) acquired by near-infrared spectroscopy (NIRS) while conducting the same protocol. Local quantification of WSS indices by CFD revealed low time-averaged WSS on the outer curvature of the ascending aorta and the inner curvature of the descending aorta (dAo) that progressively increased with exercise, but that remained low on the anterior surface of brachiocephalic arteries. High oscillatory WSS observed on the inner curvature of the aorta persisted during exercise as well. Results suggest locally continuous exposure to potentially deleterious indices of WSS despite benefits of exercise. Linear relationships between flow distributions and tissue oxygen extraction calculated from \(\hbox {StO}_{2}\) were found between the left common carotid versus cerebral tissue \((r^{2}=0.96)\) and the dAo versus leg tissue \((r^{2}=0.87)\). A resulting six-step procedure is presented to use NIRS data as a surrogate for exercise PC-MRI when setting boundary conditions for future CFD studies of the TA under simulated exercise conditions. Relationships and ensemble-averaged PC-MRI inflow waveforms are provided in an online repository for this purpose. 相似文献
10.
In aerobic bioprocesses, oxygen is a key substrate; due to its low solubility in broths (aqueous solutions), a continuous supply is needed. The oxygen transfer rate (OTR) must be known, and if possible predicted to achieve an optimum design operation and scale-up of bioreactors. Many studies have been conducted to enhance the efficiency of oxygen transfer. The dissolved oxygen concentration in a suspension of aerobic microorganisms depends on the rate of oxygen transfer from the gas phase to the liquid, on the rate at which oxygen is transported into the cells (where it is consumed), and on the oxygen uptake rate (OUR) by the microorganism for growth, maintenance and production. 相似文献
11.
Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. 总被引:4,自引:0,他引:4
The supply of oxygen is a crucial parameter when cultivating animal cells in fixed-bed reactors because of the reaction-diffusion limitation within the porous carriers. To reduce limitation and increase productivity, the dissolved oxygen concentration was raised to above air saturation (hyperoxia) in long-term experiments using hybridoma cultures. This resulted in a threefold increase of the steady-state antibody production at high dilution rates compared to air saturated medium. A reaction-diffusion model was developed as a tool to describe the oxygen distribution in fixed-bed systems. The model corresponded well to the experimental data. It was also used to study the influence of several parameters on the performance of the fixed-bed system, such as the carrier size, the dissolved oxygen concentration, or the superficial flow velocity. By adapting the model it was shown that reaction-diffusion limitation is generally not a problem for other substrates such as glucose or glutamine. 相似文献
12.
Thanh NT Murthy HN Yu KW Seung Jeong C Hahn EJ Paek KY 《Journal of plant physiology》2006,163(12):1337-1341
The effects of oxygen supply within the range 20.8–50% (using pure oxygen and air), on cell cultures of Panax ginseng were investigated in a balloon-type bubble bioreactor (5 L capacity, containing 4 L Murashige and Skoog medium, supplemented with 7.0 mg L−1 indolebutyric acid, 0.5 mg L−1 kinetin and 30 g L−1 sucrose). A 40% oxygen supply was found to be optimal for the production of both cell mass and saponin yielding values of 12.8 g (DW) L−1, 4.5 mg (g DW)−1 on day 25, respectively. Low (20.8%, 30%) and high (50%) oxygen concentration supplies were unfavorable to cell growth and saponin accumulation. The results indicate that oxygen supplementation to bioreactor-based ginseng cultures was beneficial for biomass accumulation and saponin production. 相似文献
13.
Summary Using a continuous flow technique the relationship between growth rate and substrate concentration was investigated with glucose as the limiting factor of a culture of Escherichia coli. Graphical and numerical analysis of the experimental data demonstrated that the application of the Michaelis-Menten equation produced erroneous results, whereas, the constants obtained from the Teissier equation were in agreement with the experimental data. On this basis, new equations defining the steady state cell and substrate concentration in continuous flow cultures were developed and tested against experimental data.Comparison of the specific growth rates, substrate uptake rates and oxygen consumption rates demonstrated that all were directly proportional to each other and could be related to each other by mathematical equations. Specifically it was shown that as the growth rate increased from 0.06 to k
m
=0.76 the substrate uptake rate increased from 134 to 1420 mg glucose per gram cell weight per hour and the oxygen consumption rate increased from 48.6 to 505 mg O2 per gram cell weight per hour. Independent of the growth rate 37% of the carbohydrate consumed were oxidized. The yield factor varied from 0.44 at low growth rates to 0.54 at high growth rates. Analysis of the growth rate-substrate uptake rate relationship indicated that a minimum substrate uptake rate of 55 mg glucose per gram cell weight per hour existed below which cell reproduction would cease. This was supported by the fact that steady state conditions could not be maintained in the culture at D values below 0.02 when the substrate supply rate decreased below 45 mg glucose per gram cell weight per hour.Material contained in this paper was submitted as a thesis in partial fulfillment of the requirements for the Ph. D. degree of Dr. R. S. Lipe. 相似文献
14.
15.
Uttam Chand Banerjee 《Biotechnology Techniques》1993,7(10):733-738
Summary Curvularia lunata was grown in a stirred and aerated reactor for the production of extracellular rifamycin oxidase. Volumetric oxygen transfer coefficients (KLa) were measured for various stirrer speeds, rates of aeration and cell mass concentrations in the reactor. Stirrer speed and aeration rate were optimized and it was found that stirrer speeds of 400–500 rpm and aeration rates of 0.75–1 vvm were optimum for the maximum amount of enzyme production. It was noticed that the increase in cell mass decreased the oxygen transfer coefficient. It was also noticed that the organism formed pellets rather than mycelia when grown on glucose and with an increase in the concentration of glucose in the reactor, there was heavy pellet formation. 相似文献
16.
Simple nonlinear observers for the on-line estimation of the specific growth rate from presently attainable real-time measurements are presented. The proposed observers do not assume or require any model for the specific growth rate and they are very successful in accurately estimating this parameter. Moreover, they are very easy to implement and to calibrate. Indeed, due to the particular structure of their gain, their tuning is reduced to the calibration of a single parameter. Simulation results obtained under different operating conditions are given in order to highlight the performances of the proposed estimators. 相似文献
17.
Background and Aims
Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status.Methods
Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined.Key Results
Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant.Conclusions
Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration. 相似文献18.
Jeroen J.C.M. Van Arendonk Emanuil Karanov Vera Alexieva Hans Lambers 《Plant Growth Regulation》1998,24(2):77-89
Polyamines are thought to play a role in the control of inherent or environmentally-induced growth rates of plants. To test this contention, we grew plants of four grass species, the inherently fast-growing Poa annua L. and Poa trivialis L. and the inherently slow-growing Poa compressa L. and Poa pratensis (L.) Schreb., at three levels of nitrate supply. Firstly, plants were compared when grown with free access to nitrate, allowing the plants to grow at their maximum relative growth rate (RGRmax). Secondly, we compared the plants when grown with relative nitrate addition rates of 100 and 50 mmol N (mol N)–1 day–1 (RAR100 and RAR50, respectively).The freely-occurring polyamines, spermine, spermidine and putrescine, were separated from their conjugates; the latter were further subdivided into a TCA-soluble and a TCA-insoluble fraction. Each of the three fractions responded differently to the nitrate supply. Under nitrogen limitation, the total concentration of polyamines (free and bound ones together) decreased in both leaves and roots of all Poa species, whereas that in the stem remained more or less the same. These effects were to a large extent determined by the free polyamines. For the conjugates there was more differentiation, both between plant organ and among polyamine structures. A positive correlation between the RGR, LAR (leaf area per plant mass), SLA (leaf area per leaf mass), LMR (leaf mass per plant mass) and SMR (stem mass per plant mass) with the polyamine concentration was found. The RMR (root mass per plant mass) showed a negative one. No significant differences were found between the inherently fast- and slow-growing grass species.The (putrescine)/(spermine + spermidine) ratio in the leaves increased with decreasing nitrate supply, which is associated with a decrease in leaf expansion, accounting for a decrease in LAR and SLA. For the roots, this ratio tended to decrease with decreasing nitrate supply, whereas for the stems the results were somewhat more variable.We found no evidence for a crucial role of polyamines in the determination of inherent variation of growth in spite of a positive correlation of especially the free polyamines with growth parameters. 相似文献
19.
20.
The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter 总被引:8,自引:0,他引:8
Bishop CM 《Proceedings. Biological sciences / The Royal Society》1999,266(1435):2275-2281
Resting or basal metabolic rates, compared across a wide range of organisms, scale with respect to body mass as approximately the 0.75 power. This relationship has recently been linked to the fractal geometry of the appropriate transport system or, in the case of birds and mammals, the blood vascular system. However, the structural features of the blood vascular system should more closely reflect maximal aerobic metabolic rates rather than submaximal function. Thus, the maximal aerobic metabolic rates of birds and mammals should also scale as approximately the 0.75 power. A review of the literature on maximal oxygen consumption and factorial aerobic scope (maximum oxygen consumption divided by basal metabolic rate) suggests that body mass influences the capacity of the cardiovascular system to raise metabolic rates above those at rest. The results show that the maximum sustainable metabolic rates of both birds and mammals are similar and scale as approximately the 0.88 +/- 0.02 power of body mass (and aerobic scope as approximately the 0.15 +/- 0.05 power), when the measurements are standardized with respect to the differences in relative heart mass and haemoglobin concentration between species. The maximum heart beat frequency of birds and mammals is predicted to scale as the -0.12 +/- 0.02 power of body mass, while that at rest should scale as -0.27 +/- 0.04. 相似文献