首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The spread of vector-borne diseases are greatly increased by a vector's ability to migrate. Recent studies of sylvatic Trypanosoma cruzi transmission have motivated the study of vector migration across geographic regions. Due to the natural mechanisms in which vector-borne diseases are transmitted between vectors and hosts, vector dispersal among different host populations is a critical factor in the ability of the parasite to be spread across large regions. In this study we develop a general framework for deriving large-scale, discrete-space migration rates from small-scale, continuous-space dispersal data. We identify three defining characteristics of vector migration: distance, preferred direction of dispersal, and strength of preference for a particular direction. We consider several migration scenarios in which vectors may have no preference for dispersal in a particular direction or may disperse with a preferred direction, such as northeast. We examine what effect preferred direction has on the migration rate, as well as use the local to global framework to calculate numerical estimates for vector migration rates for the primary vectors in the southeast U.S. and northern Mexico, Triatoma sanguisuga and Triatoma gerstaeckeri, based on biological and experimental data. Results from this study can be applied to metapopulation models for species that migrate.  相似文献   

2.
Trypanosoma cruzi is the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruzi I (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein.  相似文献   

3.
4.

Background

Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics'' dynamics.

Methodology and Principal Findings

The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts.

Conclusion

We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better understanding of the dynamics of such socio-ecological systems is a crucial, yet poorly considered, issue for the long-term control of Chagas disease.  相似文献   

5.
6.
Traditional methods for Chagas disease prevention are targeted at domestic vector reduction, as well as control of transfusion and maternal-fetal transmission. Population connectivity of Trypanosoma cruzi-infected vectors and hosts, among sylvatic, ecotone and domestic habitats could jeopardize targeted efforts to reduce human exposure. This connectivity was evaluated in a Mexican community with reports of high vector infestation, human infection, and Chagas disease, surrounded by agricultural and natural areas. We surveyed bats, rodents, and triatomines in dry and rainy seasons in three adjacent habitats (domestic, ecotone, sylvatic), and measured T. cruzi prevalence, and host feeding sources of triatomines. Of 12 bat and 7 rodent species, no bat tested positive for T. cruzi, but all rodent species tested positive in at least one season or habitat. Highest T. cruzi infection prevalence was found in the rodents, Baiomys musculus and Neotoma mexicana. In general, parasite prevalence was not related to habitat or season, although the sylvatic habitat had higher infection prevalence than by chance, during the dry season. Wild and domestic mammals were identified as bloodmeals of T. pallidipennis, with 9% of individuals having mixed human (4.8% single human) and other mammal species in bloodmeals, especially in the dry season; these vectors tested >50% positive for T. cruzi. Overall, ecological connectivity is broad across this matrix, based on high rodent community similarity, vector and T. cruzi presence. Cost-effective T. cruzi, vector control strategies and Chagas disease transmission prevention will need to consider continuous potential for parasite movement over the entire landscape. This study provides clear evidence that these strategies will need to include reservoir/host species in at least ecotones, in addition to domestic habitats.  相似文献   

7.
Genetic diversity of Trypanosoma cruzi populations and parasite transmission dynamics have been well documented throughout the Americas, but few studies have been conducted in the Gran Chaco ecoregion, one of the most highly endemic areas for Chagas disease, caused by T. cruzi. In this study, we assessed the distribution of T. cruzi lineages (identified by PCR strategies) in Triatoma infestans, domestic dogs, cats, humans and sylvatic mammals from two neighbouring rural areas with different histories of transmission and vector control in northern Argentina. Lineage II predominated amongst the 99 isolates characterised and lineage I amongst the six isolates obtained from sylvatic mammals. T. cruzi lineage IIe predominated in domestic habitats; it was found in 87% of 54 isolates from Tr. infestans, in 82% of 33 isolates from dogs, and in the four cats found infected. Domestic and sylvatic cycles overlapped in the study area in the late 1980s, when intense domestic transmission occurred, and still overlap marginally. The introduction of T. cruzi from sylvatic into domestic habitats is likely to occur very rarely in the current epidemiological context. The household distribution of T. cruzi lineages showed that Tr. infestans, dogs and cats from a given house compound shared the same parasite lineage in most cases. Based on molecular evidence, this result lends further support to the importance of dogs and cats as domestic reservoir hosts of T. cruzi. We believe that in Argentina, this is the first time that lineage IIc has been isolated from naturally infected domestic dogs and Tr. infestans.  相似文献   

8.
Triatomines are the vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease, the main endemic disease affecting five to seven million people in Latin America. Besides Triatoma infestans, the most important T. cruzi vector in the Gran Chaco region, other triatomine species associated with sylvatic birds and mammals are responsible for the maintenance of the wild cycle of T. cruzi. The present study aimed at evaluating the house invasion by sylvatic triatomine species in rural communities of the Los Llanos region (La Rioja, Argentina) and its association with environmental variables. House invasion by flying adult triatomines was recorded by trained collectors that surveyed over 377 houses distributed over 73 localities in a 56,600 km2 study region, between October, 2014 and February, 2015. The result of the study showed the frequent house invasion by adult triatomines: 26.3% houses were infested in 53% of the localities. Seven sylvatic triatomine species were collected, with T. guasayana and T. garciabesi among the most abundant. House invasion by triatomine species showed no spatial aggregation and was not associated with temperature, precipitation, or vegetation cover at the spatial scale considered in the present study. House invasion by the epidemiologically important T. infestans is a concern of rural communities. Besides constituting a latent, although low, risk, the presence of these species negatively interferes with the vigilance activities of the provincial Chagas disease program.  相似文献   

9.
Trypanosoma cruzi, the causative agent of Chagas disease, presents wide genetic diversity. Currently, six discrete typing units (DTUs), named TcI to TcVI, and a seventh one called TcBat are used for strain typing. Beyond the debate concerning this classification, this systematic review has attempted to provide an inventory by compiling the results of 137 articles that have used it. A total of 6,343 DTU identifications were analyzed according to the geographical and host origins. Ninety-one percent of the data available is linked to South America. This sample, although not free of potential bias, nevertheless provides today’s picture of T. cruzi genetic diversity that is closest to reality. DTUs were genotyped from 158 species, including 42 vector species. Remarkably, TcI predominated in the overall sample (around 60%), in both sylvatic and domestic cycles. This DTU known to present a high genetic diversity, is very widely distributed geographically, compatible with a long-term evolution. The marsupial is thought to be its most ancestral host and the Gran Chaco region the place of its putative origin. TcII was rarely sampled (9.6%), absent, or extremely rare in North and Central America, and more frequently identified in domestic cycles than in sylvatic cycles. It has a low genetic diversity and has probably found refuge in some mammal species. It is thought to originate in the south-Amazon area. TcIII and TcIV were also rarely sampled. They showed substantial genetic diversity and are thought to be composed of possible polyphyletic subgroups. Even if they are mostly associated with sylvatic transmission cycles, a total of 150 human infections with these DTUs have been reported. TcV and TcVI are clearly associated with domestic transmission cycles. Less than 10% of these DTUs were identified together in sylvatic hosts. They are thought to originate in the Gran Chaco region, where they are predominant and where putative parents exist (TcII and TcIII). Trends in host-DTU specificities exist, but generally it seems that the complexity of the cycles and the participation of numerous vectors and mammal hosts in a shared area, maintains DTU diversity.  相似文献   

10.
Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I) and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus) harbored TcI and the coatis (Nasua nasua) harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU) and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis’ isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores’ literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that can be bioaccumulator of T. cruzi DTU’s, seem to take place at the top of the T. cruzi transmission chain.  相似文献   

11.
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.  相似文献   

12.
Pizarro JC  Stevens L 《PloS one》2008,3(10):e3585

Background

Feeding patterns of the vector are important in the epidemiology of Chagas disease, the leading cause of heart disease in Latin America. Chagas disease is caused by the parasite, Trypanasoma cruzi, which is transmitted by blood feeding insects. Historically, feeding behaviours of haematophagous insects have been investigated using serological reactions, which have detection limits in terms of both taxonomic resolution, and quantity and quality of the blood meal. They are labor intensive, require technical expertise, need fresh or frozen samples and antibodies often are either not available commercially or the resources for synthesis and purification are not available. We describe an assay to identify vertebrate blood meal sources, and the parasite T. cruzi using species-specific PCR assays from insect vectors and use the method to provide information regarding three questions: (1) Do domestic and peri-domestic (chicken coop and animal corral) habitats vary in the blood meals detected in the vectors? (2) What is the pattern of multiple blood meals? (3) Does the rate of T. cruzi infection vary among habitats and is it associated with specific blood meal types?

Methodology/Principal Findings

Assays based on the polymerase chain reaction were evaluated for identification of the blood meal source in the heamatophagous Chagas disease vector Triatoma infestans. We evaluate a technique to identify 11 potential vertebrate food sources from the complex mixture extracted from the vector''s abdomen. We tested the assay on 81 T. infestans specimens collected from the Andean highlands in the department of Chuquisaca, located in central Bolivia, one of the regions in South America where sylvatic T. infestans have been reported. This area is suggested to be the geographic origin of T. infestans and has very high human infection rates that may be related to sylvatic vector populations.

Conclusion/Significance

The results of the assays revealed that a high percentage of insects collected in human dwellings had fed on peri-domestic animals. In contrast, one insect from a chicken coop but no bugs from corrals tested positive for human blood. Forty-eight percent of insects tested positive for more than one vertebrate species. T. cruzi infection was detected in 42% of the specimens. From the epidemiological point of view, the results reveal an overall pattern of movement from peri-domestic structures to human habitations for T. infestans in this region of Bolivia as well as the important role of pigs, dogs, chickens and guinea pigs in the dynamics of T. cruzi infection.  相似文献   

13.
Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas'' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections.  相似文献   

14.
We used an individual-based molecular multisource approach to assess the epidemiological importance of Triatoma brasiliensis collected in distinct sites and ecotopes in Rio Grande do Norte State, Brazil. In the semi-arid zones of Brazil, this blood sucking bug is the most important vector of Trypanosoma cruzi—the parasite that causes Chagas disease. First, cytochrome b (cytb) and microsatellite markers were used for inferences on the genetic structure of five populations (108 bugs). Second, we determined the natural T. cruzi infection prevalence and parasite diversity in 126 bugs by amplifying a mini-exon gene from triatomine gut contents. Third, we identified the natural feeding sources of 60 T. brasiliensis by using the blood meal content via vertebrate cytb analysis. Demographic inferences based on cytb variation indicated expansion events in some sylvatic and domiciliary populations. Microsatellite results indicated gene flow between sylvatic and anthropic (domiciliary and peridomiciliary) populations, which threatens vector control efforts because sylvatic population are uncontrollable. A high natural T. cruzi infection prevalence (52–71%) and two parasite lineages were found for the sylvatic foci, in which 68% of bugs had fed on Kerodon rupestris (Rodentia: Caviidae), highlighting it as a potential reservoir. For peridomiciliary bugs, Galea spixii (Rodentia: Caviidae) was the main mammal feeding source, which may reinforce previous concerns about the potential of this animal to link the sylvatic and domiciliary T. cruzi cycles.  相似文献   

15.
It is often assumed that parasites are not virulent to their vectors. Nevertheless, parasites commonly exploit their vectors (nutritionally for example) so these can be considered a form of host. Trypanosoma cruzi, a protozoan found in mammals and triatomine bugs in the Americas, is the etiological agent of Chagas disease that affects man and domestic animals. While it has long been considered avirulent to its vectors, a few reports have indicated that it can affect triatomine fecundity. We tested whether infection imposed a temperature-dependent cost on triatomine fitness. We held infected insects at four temperatures between 21 and 30°C and measured T. cruzi growth in vitro at the same temperatures in parallel. Trypanosoma cruzi infection caused a considerable delay in the time the insects took to moult (against a background effect of temperature accelerating moult irrespective of infection status). Trypanosoma cruzi also reduced the insects’ survival, but only at the intermediate temperatures of 24 and 27°C (against a background of increased mortality with increasing temperatures). Meanwhile, in vitro growth of T. cruzi increased with temperature. Our results demonstrate virulence of a protozoan agent of human disease to its insect vector under these conditions. It is of particular note that parasite-induced mortality was greatest over the range of temperatures normally preferred by these insects, probably implying adaptation of the parasite to perform well at these temperatures. Therefore we propose that triggering this delay in moulting is adaptive for the parasites, as it will delay the next bloodmeal taken by the bug, thus allowing the parasites time to develop and reach the insect rectum in order to make transmission to a new vertebrate host possible.  相似文献   

16.

Background

The demographic transition of populations from rural areas to large urban centers often results in a disordered occupation of forest remnants and increased economic pressure to develop high-income buildings in these areas. Ecological and socioeconomic factors associated with these urban transitions create conditions for the potential transmission of infectious diseases, which was demonstrated for Chagas disease.

Methodology/Principal Findings

We analyzed 930 triatomines, mainly Triatoma tibiamaculata, collected in artificial and sylvatic environments (forests near houses) of a suburban area of the city of Salvador, Bahia State, Brazil between 2007 and 2011. Most triatomines were captured at peridomiciles. Adult bugs predominated in all studied environments, and nymphs were scarce inside houses. Molecular analyses of a randomly selected sub-sample (n=212) of triatomines showed Trypanosoma cruzi infection rates of 65%, 50% and 56% in intradomestic, peridomestic and sylvatic environments, respectively. We detected the T. cruzi lineages I and II and mixed infections. We also showed that T. tibiamaculata fed on blood from birds (50%), marsupials (38%), ruminants (7%) and rodents (5%). The probability of T. cruzi infection was higher in triatomines that fed on marsupial blood (odds ratio (OR) = 1.95, 95% confidence interval (CI) = 1.22-3.11). Moreover, we observed a protective effect against infection in bugs that fed on bird blood (OR = 0.43, 95% CI = 0.30-0.73).

Conclusions/Significance

The frequent invasion of houses by infected triatomines indicates a potential risk of T. cruzi transmission to inhabitants in this area. Our results reinforce that continuous epidemiological surveillance should be performed in areas where domestic transmission is controlled but enzootic transmission persists.  相似文献   

17.
The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30°C) it did, at 25°C, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30°C, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival.  相似文献   

18.
19.
We determined the prevalence rate and risk of infection of Trypanosoma cruzi and other trypanosomatids in Peruvian non-human primates (NHPs) in the wild (n = 126) and in different captive conditions (n = 183). Blood samples were collected on filter paper, FTA cards, or EDTA tubes and tested using a nested PCR protocol targeting the 24Sα rRNA gene. Main risk factors associated with trypanosomatid and T. cruzi infection were genus and the human–animal context (wild vs captive animals). Wild NHPs had higher prevalence of both trypanosomatids (64.3 vs 27.9%, P < 0.001) and T. cruzi (8.7 vs 3.3%, P = 0.057), compared to captive NHPs, suggesting that parasite transmission in NHPs occurs more actively in the sylvatic cycle. In terms of primate family, Pitheciidae had the highest trypanosomatid prevalence (20/22, 90.9%) and Cebidae had the highest T. cruzi prevalence (15/117, 12.8%). T. cruzi and trypanosomatids are common in Peruvian NHPs and could pose a health risk to human and animals that has not been properly studied.  相似文献   

20.
The causes of the particular distribution of both Trypanosoma cruzi lineages throughout the American continent remain unknown. In Colombia, T. cruzi I is the predominant group in both domestic and sylvatic cycles. Here, we present the biological characterization of T. cruzi parasites belonging to both T. cruzi I and T. cruzi IIb groups. Our results show the inability of the T. cruzi IIb clones to infect mammalian cells, produce trypomastigotes and replicate in Rhodnius prolixus, the main vector species in this country. Moreover, this result was confirmed when other species from the same genus, such as R. pallescens and R. robustus, were infected with the same TcIIb clone and its parental strain, while the infection in other genera such as Triatoma and Panstrongylus was successful. Furthermore, the growth kinetics and duplication time in vitro suggest that the high prevalence of T. cruzi I in Colombia results from more successful interactions between parasite lineage, vector, and host species. This type of study may help to understand the factors influencing the particular epidemiological patterns of Chagas disease transmission in different endemic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号