首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-synuclein gene, which encodes a brain presynaptic nerve terminal protein of unknown function, is linked to familial early-onset Parkinson's disease (PD). The finding that alpha-synuclein forms the major fibrillary component of Lewy bodies in brains of PD patients suggests that the two point mutations in alpha-synuclein (Ala(53)Thr, Ala(30)Pro) may promote the aggregation of alpha-synuclein into filaments. To address the role of alpha-synuclein in neurodegenerative diseases, we performed a yeast two-hybrid screen of a rat adult brain cDNA library using rat alpha-synuclein 2 (alphaSYN2). Here we report that alphaSYN2 interacts specifically with Tat binding protein 1, a subunit of the 700-kDa proteasome activator (PA700), the regulatory complex of the 26S proteasome and of the modulator complex, which enhances PA700 activation of the proteasome.  相似文献   

2.
Oxidative stress, inflammation and alpha-synuclein overexpression confer risk for development of alpha-synucleinopathies-neurodegenerative diseases that include Parkinson disease and Lewy body dementia. Dopaminergic neurons undergo degeneration in these diseases and are particularly susceptible to oxidative stress because dopamine metabolism itself creates reactive oxygen species. Intraneuronal deposition of alpha-synuclein as amyloid fibrils or Lewy bodies is the hallmark of these diseases. Herein, we demonstrate that concentrations of oxidative cholesterol metabolites derived from reactive oxygen species are elevated in the cortices of individuals with Lewy body dementia relative to those of age-matched controls, and we show that these metabolites accelerate alpha-synuclein aggregation in vitro. The increase in the production of these cytotoxic cholesterol metabolites is also observed in a dopaminergic cell line that overexpresses alpha-synuclein. By extension, these data lead to the hypothesis that oxidative stress produces cholesterol aldehydes that enable alpha-synuclein aggregation, leading to a pathologic cycle.  相似文献   

3.
A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of alpha-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated alpha-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of alpha-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated alpha-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.  相似文献   

4.
Parkin accumulation in aggresomes due to proteasome impairment   总被引:16,自引:0,他引:16  
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and by the presence of ubiquitinated cytoplasmic inclusions known as Lewy bodies. Alpha-synuclein and Parkin are two of the proteins associated with inherited forms of PD and are found in Lewy bodies. Whereas numerous reports indicate the tendency of alpha-synuclein to aggregate both in vitro and in vivo, no information is available about similar physical properties for Parkin. Here we show that overexpression of Parkin in the presence of proteasome inhibitors leads to the formation of aggresome-like perinuclear inclusions. These eosinophilic inclusions share many characteristics with Lewy bodies, including a core and halo organization, immunoreactivity to ubiquitin, alpha-synuclein, synphilin-1, Parkin, molecular chaperones, and proteasome subunit as well as staining of some with thioflavin S. We propose that the process of Lewy body formation may be akin to that of aggresome-like structures. The tendency of wild-type Parkin to aggregate and form inclusions may have implications for the pathogenesis of sporadic PD.  相似文献   

5.
The presynaptic alpha-synuclein is a prime suspect for contributing to Lewy pathology and clinical aspects of diseases, including Parkinson's disease, dementia with Lewy bodies, and a Lewy body variant of Alzheimer's disease. Here we examined the pathogenic mechanism of neuronal cell death induced by alpha-synuclein. The exogenous addition of alpha-synuclein caused a marked decrease of cell viability in primary and immortalized neuronal cells. The neuronal cell death appeared to be correlated with the Rab5A-specific endocytosis of alpha-synuclein that subsequently caused the formation of Lewy body-like intracytoplasmic inclusions. This was further supported by the fact that the expression of GTPase-deficient Rab5A resulted in a significant decrease of its cytotoxicity as a result of incomplete endocytosis of alpha-synuclein.  相似文献   

6.
Mitochondrial dysfunction has been associated with Parkinson's disease. However, the role of mitochondrial defects in the formation of Lewy bodies, a pathological hallmark of Parkinson's disease has not been addressed directly. In this report, we investigated the effects of inhibitors of the mitochondrial electron-transport chain on the aggregation of alpha-synuclein, a major protein component of Lewy bodies. Treatment with rotenone, an inhibitor of complex I, resulted in an increase of detergent-resistant alpha-synuclein aggregates and a reduction in ATP level. Another inhibitor of the electron-transport chain, oligomycin, also showed temporal correlation between the formation of aggregates and ATP reduction. Microscopic analyses showed a progressive evolution of small aggregates of alpha-synuclein to a large perinuclear inclusion body. The inclusions were co-stained with ubiquitin, 20 S proteasome, gamma-tubulin, and vimentin. The perinuclear inclusion bodies, but not the small cytoplasmic aggregates, were thioflavin S-positive, suggesting the amyloid-like conformation. Interestingly, the aggregates disappeared when the cells were replenished with inhibitor-free medium. Disappearance of aggregates coincided with the recovery of mitochondrial metabolism and was partially inhibited by proteasome inhibitors. These results suggest that the formation of alpha-synuclein inclusions could be initiated by an impaired mitochondrial function and be reversed by restoring normal mitochondrial metabolism.  相似文献   

7.
Lewy bodies, neuropathological hallmarks of Parkinson's disease and dementia with Lewy bodies, comprise alpha-synuclein filaments and other less defined proteins. Characterization of Lewy body proteins that interact with alpha-synuclein may provide insight into the mechanism of Lewy body formation. Double immunofluorescence labeling and confocal microscopy revealed approximately 80% of cortical Lewy bodies contained microtubule-associated protein 1B (MAP-1B) that overlapped with alpha-synuclein. Lewy bodies were isolated using an immunomagnetic technique from brain tissue of patients dying with dementia with Lewy bodies. Lewy body proteins were resolved by polyacrylamide gel electrophoresis. Immunoblotting confirmed the presence of MAP-1B and alpha-synuclein in purified Lewy bodies. Direct binding studies revealed a high affinity interaction (IC(50) approximately 20 nm) between MAP-1B and alpha-synuclein. The MAP-1B-binding sites were mapped to the last 45 amino acids of the alpha-synuclein C terminus. MAP-1B also bound in vitro assembled alpha-synuclein fibrils. Thus, MAP-1B may be involved in the pathogenesis of Lewy bodies via its interaction with monomeric and fibrillar alpha-synuclein.  相似文献   

8.
Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.  相似文献   

9.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.  相似文献   

10.
Alpha-Synuclein is degraded by both autophagy and the proteasome   总被引:19,自引:0,他引:19  
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of aggregates (Lewy bodies) in neurons. alpha-Synuclein is the major protein in Lewy bodies and rare mutations in alpha-synuclein cause early-onset PD. Consequently, alpha-synuclein is implicated in the pathogenesis of PD. Here, we have investigated the degradation pathways of alpha-synuclein, using a stable inducible PC12 cell model, where the expression of exogenous human wild-type, A30P, or A53T alpha-synuclein can be switched on and off. We have used a panel of inhibitors/stimulators of autophagy and proteasome function and followed alpha-synuclein degradation in these cells. We found that not only is alpha-synuclein degraded by the proteasome, but it is also degraded by autophagy. A role for autophagy was further supported by the presence of alpha-synuclein in organelles with the ultrastructural features of autophagic vesicles. Since rapamycin, a stimulator of autophagy, increased clearance of alpha-synuclein, it merits consideration as a potential therapeutic for Parkinsons disease, as it is designed for chronic use in humans.  相似文献   

11.
Neuropathological investigations have identified major hallmarks of chronic neurodegenerative disease. These include protein aggregates called Lewy bodies in dementia with Lewy bodies and Parkinson's disease. Mutations in the alpha-synuclein gene have been found in familial disease and this has led to intense focused research in vitro and in transgenic animals to mimic and understand Parkinson's disease. A decade of transgenesis has lead to overexpression of wild type and mutated alpha-synuclein, but without faithful reproduction of human neuropathology and movement disorder. In particular, widespread regional neuronal cell death in the substantia nigra associated with human disease has not been described. The intraneuronal protein aggregates (inclusions) in all of the human chronic neurodegenerative diseases contain ubiquitylated proteins. There could be several reasons for the accumulation of ubiquitylated proteins, including malfunction of the ubiquitin proteasome system (UPS). This hypothesis has been genetically tested in mice by conditional deletion of a proteasomal regulatory ATPase gene. The consequences of gene ablation in the forebrain include extensive neuronal death and the production of Lewy-like bodies containing ubiquitylated proteins as in dementia with Lewy bodies. Gene deletion in catecholaminergic neurons, including in the substantia nigra, recapitulates the neuropathology of Parkinson's disease.  相似文献   

12.
Degradation of alpha-synuclein by proteasome   总被引:12,自引:0,他引:12  
Mutations in alpha-synuclein are known to be associated with Parkinson's disease (PD). The coexistence of this neuronal protein with ubiquitin and proteasome subunits in Lewy bodies in sporadic disease suggests that alterations of alpha-synuclein catabolism may contribute to the pathogenesis of PD. The degradation pathway of alpha-synuclein has not been identified nor has the kinetics of this process been described. We investigated the degradation kinetics of both wild-type and A53T mutant 6XHis-tagged alpha-synuclein in transiently transfected SH-SY5Y cells. Degradation of both isoforms followed first-order kinetics over 24 h as monitored by the pulse-chase method. However, the t((1)/(2)) of mutant alpha-synuclein was 50% longer than that of the wild-type protein (p < 0.01). The degradation of both recombinant proteins and endogenous alpha-synuclein in these cells was blocked by the selective proteasome inhibitor beta-lactone (40 microM), indicating that both wild-type and A53T mutant alpha-synuclein are degraded by the ubiquitin-proteasome pathway. The slower degradation of mutant alpha-synuclein provides a kinetic basis for its intracellular accumulation, thus favoring its aggregation.  相似文献   

13.
Brown DR 《The FEBS journal》2007,274(15):3766-3774
alpha-synuclein is one of a family of proteins whose function remains unknown. This protein has become linked to a number of neurodegenerative disease although its potential causative role in these diseases remains mysterious. In diseases such as Parkinson's disease and Lewy body dementias, alpha-synuclein becomes deposited in aggregates termed Lewy bodies. Also, some inherited forms of Parkinson's diseases are linked to mutations in the gene for alpha-synuclein. Studies have mostly focussed on what causes the aggregation of the protein but, like many amyloidogenic proteins associated with a neurodegenerative disorder, this protein has now been suggested to bind copper. This finding is currently controversial. This review examines the evidence that alpha-synuclein is a copper binding protein and discusses whether this has any significance in determining the function of the protein or whether copper binding is at all necessary for aggregation.  相似文献   

14.
Lewy bodies are cytoskeletal inclusions associated with neuronal injury and death in idiopathic Parkinson's disease and other neurodegenerative disorders. The chemical composition of the 8-10-nm fibrils of the Lewy body is unknown, although they are related to both normal cytoskeletal elements and paired helical filaments of Alzheimer neurofibrillary tangles. From the Lewy body-rich cerebral cortex of patients with diffuse Lewy body disease we have isolated intact Lewy bodies using a high salt buffer/nonionic detergent gradient centrifugation procedure and extracted the constitutive fibrils with urea and sodium dodecyl sulfate. Urea/detergent-resistant Lewy body fibrils were solubilized with formic acid and found to contain a single protein band of 68 kDa, which was not found in identically prepared normal brain homogenates. The Lewy body derived-polypeptide was recognized on immunoblots by a polyclonal antibody that reacted with both the 68-kDa neurofilament subunit and the microtubule-associated protein tau. The 68-kDa Lewy body protein was not labeled by the monoclonal antibody tau-1 despite prior in vitro enzymatic dephosphorylation. We conclude that the detergent-insoluble component of the cortical Lewy body fibril shares epitopes with neurofilament and tau and may be a posttranslationally modified derivative of either neurofilament or tau with substantially altered biochemical and immunologic properties.  相似文献   

15.
Tubulin seeds alpha-synuclein fibril formation.   总被引:5,自引:0,他引:5  
Increasing evidence suggests that alpha-synuclein is a common pathogenic molecule in several neurodegenerative diseases, particularly in Parkinson's disease. To understand alpha-synuclein pathology, we investigated molecules that interact with alpha-synuclein in human and rat brains and identified tubulin as an alpha-synuclein binding/associated protein. Tubulin co-localized with alpha-synuclein in Lewy bodies and other alpha-synuclein-positive pathological structures. Tubulin initiated and promoted alpha-synuclein fibril formation under physiological conditions in vitro. These findings suggest that an interaction between tubulin and alpha-synuclein might accelerate alpha-synuclein aggregation in diseased brains, leading to the formation of Lewy bodies.  相似文献   

16.
Human α-synuclein is a presynaptic terminal protein and can form insoluble fibrils that are believed to play an important role in the pathogenesis of several neurodegenerative diseases such as Parkinson‘s disease, dementia with Lewy bodies and Lewy body variant of Alzheimer‘s disease. In this paper, in situ atomic force microscopy has been used to study the structural properties of α-synuclein fibrils in solution using two different atomic force microscopy imaging modes: tapping mode and contact mode. In the in situ contact mode atomic force microscopy experiments α-synuclein fibrils quickly broke into fragments, and a similar phenomenon was found using tapping mode atomic force microscopy in which α-synuclein fibrils were incubated with guanidine hydrochloride (0.6 M). The α-synuclein fibrils kept their original filamentous topography for over 1h in the in situ tapping mode atomic force microscopy experiments. The present results provide indirect evidence on how 13-sheets assemble into α-synuclein fibrils on a nanometer scale.  相似文献   

17.
Alpha-synuclein is a major component of Lewy bodies in Parkinson's disease and is found associated with several other forms of dementia. As with other neurodegenerative diseases, the ability of alpha-synuclein to aggregate and form fibrillar deposits seems central to its pathology. We have defined a sequence within the NAC region of alpha-synuclein that is necessary for aggregation. Exploitation of chemically modified analogues of this peptide may produce inhibitors of aggregation.  相似文献   

18.
alpha-Synuclein-positive cytoplasmic inclusions are a pathological hallmark of several neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Here we report that Sept4, a member of the septin protein family, is consistently found in these inclusions, whereas five other septins (Sept2, Sept5, Sept6, Sept7, and Sept8) are not found in these inclusions. Sept4 and alpha-synuclein can also be co-immunoprecipitated from normal human brain lysates. When co-expressed in cultured cells, FLAG-tagged Sept4 and Myc-tagged alpha-synuclein formed detergent-insoluble complex, and upon treatment with a proteasome inhibitor, they formed Lewy body-like cytoplasmic inclusions. The tagged Sept4 and alpha-synuclein synergistically accelerated cell death induced by the proteasome inhibitor, and this effect was further enhanced by expression of another Lewy body-associated protein, synphilin-1, tagged with the V5 epitope. Moreover, co-expression of the three proteins (tagged Sept4, alpha-synuclein, and synphilin-1) was sufficient to induce cell death. These data raise the possibility that Sept4 is involved in the formation of cytoplasmic inclusions as well as induction of cell death in alpha-synuclein-associated neurodegenerative disorders.  相似文献   

19.
Parkinson disease (PD) belongs to a heterogeneous group of neurodegenerative disorders with movement alterations, cognitive impairment, and alpha-synuclein accumulation in cortical and subcortical regions. Jointly, these disorders are denominated Lewy body disease. Mutations in the parkin gene are the most common cause of familial parkinsonism, and a growing number of studies have shown that stress factors associated with sporadic PD promote parkin accumulation in the insoluble fraction. alpha-Synuclein and parkin accumulation and mutations in these genes have been associated with familial PD. To investigate whether alpha-synuclein accumulation might be involved in the pathogenesis of these disorders by interfering with parkin solubility, synuclein-transfected neuronal cells were transduced with lentiviral vectors expressing parkin. Challenging neurons with proteasome inhibitors or amyloid-beta resulted in accumulation of insoluble parkin and, to a lesser extent, alpha-tubulin. Similarly to neurons in the brains of patients with Lewy body disease, in co-transduced cells alpha-synuclein and parkin colocalized and co-immunoprecipitated. These effects resulted in decreased parkin and alpha-tubulin ubiquitination, accumulation of insoluble parkin, and cytoskeletal alterations with reduced neurite outgrowth. Taken together, accumulation of alpha-synuclein might contribute to the pathogenesis of PD and other Lewy body diseases by promoting alterations in parkin and tubulin solubility, which in turn might compromise neural function by damaging the neuronal cytoskeleton. These studies provide a new perspective on the potential nature of pathogenic alpha-synuclein and parkin interactions in Parkinson disease.  相似文献   

20.
Missense mutations (A30P and A53T) in alpha-synuclein and the overproduction of the wild-type protein cause familial forms of Parkinson's disease and dementia with Lewy bodies. Alpha-synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define these diseases at a neuropathological level. Recently, a third missense mutation (E46K) in alpha-synuclein was described in an inherited form of dementia with Lewy bodies. Here, we have investigated the functional effects of this novel mutation on phospholipid binding and filament assembly of alpha-synuclein. When compared to the wild-type protein, the E46K mutation caused a significantly increased ability of alpha-synuclein to bind to negatively charged liposomes, unlike the previously described mutations. The E46K mutation increased the rate of filament assembly to the same extent as the A53T mutation. Filaments formed from E46K alpha-synuclein often had a twisted morphology with a cross-over spacing of 43 nm. The observed effects on lipid binding and filament assembly may explain the pathogenic nature of the E46K mutation in alpha-synuclein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号