首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female mice were fed a conventional diet, shifted at 119 days of age to a diet supplemented with 10 wt % lard (Lar), high-linoleic (n-6) safflower oil (Saf), rapeseed oil (low-erucic, Rap), high-alpha-linolenic (n-3) perilla oil (Per) or a mixture (1:9) of ethyl docosahexaenoate (n-3) and soybean oil (DHA/Soy). Weight gain was less in the Per group than in the other groups at 497 days of age. In the Rap group, proteinuria was more severe than in the Saf, Per and DHA/Soy group, and hepatic triacylglycerol accumulation was greater than in the other groups. The mean survival time of the DHA/Soy group (753 days) was significantly longer than in the Lar group (672 days) and Saf group (689 days); the differences among other groups (e.g., 701 days in the Per group and 712 days in the Rap group) were not statistically significant. Although DHA is more susceptible to auto-oxidation than other major fatty acids in the air, an oil containing DHA was found to increase the survival of mice. Rapeseed oil that decreases the survival time of SHRSP rats was found to be safe in the mouse strain used in this study when survival was an end point.  相似文献   

2.
To elucidate the mechanisms underlying the plasma triacylglycerol-lowering effects of certain fish oils, livers from male rats fed either a standard commercial diet (controls) or diets supplemented with 15% (w/w) fish or safflower oils were perfused with undiluted rat blood. Rates of hepatic lipogenesis, measured by the incorporation of 3H2O into fatty acids, followed the order: control greater than safflower oil greater than fish oil. Secretion of newly synthesized fatty acids in very-low-density lipoproteins was also inhibited by the feeding of both oil-supplemented diets with the greater suppression being seen in livers from animals fed fish oil. The hepatic release of very-low-density lipoprotein triacylglycerol mass was also significantly depressed in animals fed the fish oil-supplemented diet but not in those fed safflower oil. Ketogenesis did not differ between livers from rats fed the control and safflower oil diets but was significantly raised in the fish oil group. Increased ketogenesis with fish oil was paralleled by a decrease in the sensitivity of carnitine palmitoyl transferase of isolated mitochondria to inhibition by malonyl-CoA. The inhibitory effect of malonyl-CoA in the safflower oil group was intermediate between that in the fish oil and control groups. Activities of glycerophosphate acyltransferase with either palmitoyl-CoA or oleyl-CoA were increased by feeding oil-supplemented diets. Activity with palmitoyl-CoA that was suppressible by N-ethylmaleimide was also considerably diminished in both groups. The results indicate that the lowering of plasma triacylglycerols by fish oil reflects: (a) diminished lipogenesis; (b) increased fatty acid oxidation possibly in peroxisomes; and (c) diminished secretion of triacylglycerols by the liver.  相似文献   

3.
An influence of fish oils (rich in eicosapentaenoic acid, EPA) in modulating (a) the development of hypertension in the stroke prone spontaneously hypertensive rat (SHRSP) and (b) vascular neuroeffector mechanisms in the SHRSP was explored. Rats (SHRSP) were placed on a series of diets for a period of 13 weeks from 4 weeks of age. The fatty acid composition of the diets was derived from fish oil, olive oil, safflower oil or beef fat. After 13 weeks, rats fed diets containing fish oil (at a total dietary fat level of either 5% or 15%) had mean blood pressures approximately 20-25 mmHg lower than other SHRSP rats maintained on diets containing either olive oil, safflower oil or beef fat. The dietary schedules providing fish oil depressed the contractile responses mediated by sympathetic nerve stimulation in the mesenteric vascular bed preparation. The results suggest that the n-3 polyunsaturated fatty acids retard the development of hypertension in the SHRSP rat and modulate the contractile responses of blood vessels mediated by sympathetic nerves in the isolated perfused mesenteric vascular bed preparation.  相似文献   

4.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

5.
The effects of fish oil combined with dietary sodium restriction on blood pressure and mesenteric vascular resistance were examined in a series of experiments with adult normotensive (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Rats were fed normal or low sodium diets containing fish oil, olive oil or safflower oil. Small but significant reductions of blood pressure (measured directly in conscious rats) were seen in SHRSP but not in WKY after 8 weeks on a fish oil/low sodium diet, compared with rats fed olive or safflower oil diets with normal sodium content. This antihypertensive effect was not dependent on neurally mediated vasoconstriction but was associated with a reduction of basal resistance in the blood-perfused mesenteric artery. Subcutaneous injection of fish oil reduced blood pressure in adult SHRSP on a normal sodium diet. However, there was a further fall in blood pressure when sodium intake was reduced. The results indicate the antihypertensive effect of fish oil can be enhanced by restricting sodium intake.  相似文献   

6.
Fish oil (FO) has traditionally been used as the dominating lipid component in fish feed. However, FO is a limited resource and the price varies considerably, which has led to an interest in using alternative oils, such as vegetable oils (VOs), in fish diets. It is far from clear how these VOs affect liver lipid secretion and fish health. The polyunsaturated fatty acids (PUFAs), eicosapentanoic acid (EPA) and docosahexanioc acid (DHA), reduce the secretion of lipoproteins rich in triacylglycerols (TAGs) in Atlantic salmon, as they do in humans. The mechanism by which n-3 fatty acids (FAs) in the diet reduce TAG secretion is not known. We have therefore investigated the effects of rapeseed oil (RO) and n-3 rich diets on the accumulation and secretion of (3)H-glycerolipids by salmon hepatocytes. Salmon, of approximately 90 g were fed for 17 weeks on one of four diets supplemented with either 13.5% FO, RO, EPA-enriched oil or DHA-enriched oil until a final average weight of 310 g. Our results show that the dietary FA composition markedly influences the endogenous FA composition and lipid content of the hepatocytes. The intracellular lipid level in hepatocytes from fish fed RO diet and DHA diet were higher, and the expressions of the genes for microsomal transfer protein (MTP) and apolipoprotein A1 (Apo A1) were lower, than those in fish fed the two other diets. Secretion of hepatocyte glycerolipids was lower in fish fed the EPA diet and DHA diet than it was in fish fed the RO diet. Our results indicate that EPA and DHA possess different hypolipidemic properties. Both EPA and DHA inhibit TAG synthesis and secretion, but only EPA induces mitochondrial proliferation and reduce intracellular lipid. Expression of the gene for peroxisome proliferator-activated receptor alpha (PPARalpha) was higher in the DHA dietary group than it was in the other groups.  相似文献   

7.
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.  相似文献   

8.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial mass 5 g, were fed one of three practical type diets for 64 weeks. The three diets differed only in the added oil and were 100% fish oil (FO; diet A), 40% FO/60% vegetable oil blend (VO; diet B) where the VO blend was rapeseed oil, linseed oil and palm oil in the ratio 10/35/15 by weight and 40% FO/60% VO blend (diet C) where the ratio was 24/24/12 by weight. After final sample collection the remaining fish were switched to a 100% FO finishing diet for a further 20 weeks. After 64 weeks fish fed 60% VO diet B had significantly lower live mass and liver mass than fish fed diets A and C although SGR, FCR and length were not different between groups. There were no differences in any of the above parameters after either 14 or 20 weeks on the FO finishing diet. Fatty acid compositions of flesh were correlated to dietary fatty acids although there was selective retention of docosahexaenoic acid (22:6n-3; DHA) regardless of dietary input. Inclusion of dietary VO resulted in significantly reduced flesh levels of DHA and eicosapentaenoic acid (20:5n-3; EPA) while 18:1n-9, 18:2n-6 and 18:3n-3 were all significantly increased in fish fed the 60% VO diets. Fatty acid compositions of liver showed broadly similar changes, as a result of dietary fatty acid composition, as was seen in flesh. However, the response of flesh and liver to feeding a FO finishing diet was different. In flesh, DHA and EPA values were not restored after 14 or 20 weeks of feeding a FO finishing diet with the values in fish fed the two 60% VO diets being around 70% of the values seen in fish fed FO throughout. Conversely, and despite liver DHA and EPA levels being reduced to only 40% of the value seen in fish fed 100% FO after 64 weeks, the levels of liver DHA and EPA were not significantly different between treatments after feeding the FO finishing diet for 14 weeks. However, a 200 g portion of sea bass flesh, after feeding the experimental diets for 64 weeks followed by a FO diet for 14 weeks, contained 1.22 and 0.95 g of EPA + DHA for fish fed FO or 60% VO, respectively. Therefore, sea bass grown for most of the production cycle using diets containing 60% VO can still contribute a significant quantity of healthy n-3 HUFA to the human consumer.  相似文献   

9.
In this study, we administered various diets of stearidonic acid (SDA, 18:4n?3) soybean oil to rats and examined the subsequent blood and organ biochemical parameters. Male Wistar rats (seven rats/group, six groups total) were fed diets supplemented with a test oil for 4 weeks. Diets containing test oils were: FFC diet (fish-oil-free control diet), C diet (control group, assuming a Japanese diet), SDA25 diet (25% 18:4n?3 soybean oil in the C diet), SDA50 (50% 18:4n?3 soybean oil in the C diet), ALA diet (34% flaxseed oil in the C diet), and EPA+DHA diet (34% fish oil in the C diet). The intake of 18:4n?3 showed increased relative efficiency of 20:5n?3 accretions in serum and liver triacylglycerol and significantly decreased the serum triacylglycerol level in rats. The results suggested that the consumption of 18:4n?3 soybean oil may modify the lipid and fatty acid profiles of body fats, even when EPA and DHA derived from fish is consumed.  相似文献   

10.
The purpose of this investigation was to determine whether diets supplemented with oils from three different marine sources, all of which contain high proportions of long-chain n-3 polyunsaturated fatty acids (PUFA), result in qualitatively distinct lipid and fatty acid profiles in guinea pig heart. Albino guinea pigs (14 days old) were fed standard, nonpurified guinea pig diets (NP) or NP supplemented with menhaden fish oil (MO), harp seal oil (SLO) or porbeagle shark liver oil (PLO) (10%, w/w) for 4-5 weeks. An n-6 PUFA control group was fed NP supplemented with corn oil (CO). All animals appeared healthy, with weight gains marginally lower in animals fed the marine oils. Comparison of relative organ weights indicated that only the livers responded to the diets, and that they were heavier only in the marine-oil fed guinea pigs. Heart total cholesterol levels were unaffected by supplementing NP with any of the oils, whereas all increased the triacylglycerol (TAG) content. The fatty-acid profiles of totalphospholipid (TPL), TAG and free fatty acid (FFA) fractions of heart lipids showed that feeding n-3 PUFA significantly altered the proportions of specific fatty-acid classes. For example, all marine-oil-rich diets were associated with increases in total monounsaturated fatty acids in TPL (p < 0.05), and with decreases in total saturates in TAG (p < 0.05). Predictably, the n-3 PUFA enriched regimens significantly increased the cardiac content of n-3 PUFA and decreased that of n-6 PUFA, although the extent varied among the diets. As a result, n-6/n-3 ratios were significantly lower in all myocardial lipid classes of marine-oil-fed guinea pigs. Analyses of the profiles of individual PUFA indicated that quantitatively, the fatty acids of the three marine oils were metabolized and/or incorporated into TPL, TAG and FFA in a diet-specific manner. In animals fed MO-enriched diets in which eicosapentaenoic acid (EPA) > docosahexacnoic acid (DHA), ratios of DHA /EPA in the hearts were 1.2, 2.2 and 1.5 in TPL, TAG and FFA, respectively. In SLO-fed guinea pigs in which dietary EPA DHA, ratios of DHA/EPA were 0.9, 3.4 and 2.1 in TPL, TAG and FFA, respectively. Feeding NP + PLO (DHA/EPA = 4.8), resulted in values for DHA/EPA in cardiac tissue of 2.1, 10.6 and 2.9 in TPL, TAG and FFA, respectively. In the TAG and FFA, proportions of n-3 docosapentaenoic acid (n-3 DPA) were equal to or higher than EPA in the SLO- and PLO-fed animals. The latter group exhibited the greatest difference between the DHA/n-3 DPA ratio in the diet and in cardiac TAG and FFA fractions (7, 3.4 and 3.1, respectively). Quantitative analysis indicated that 85% of the n-3 PUFA were in TPL, 7-11% were in TAG, and 2-6% were FFA. Specific patterns of distribution of EPA, DPA and DHA depended on the dietary oil. Both the qualitative and quantitative results of this study demonstrated that in guinea pigs, n-3 PUFA in different marine oils are metabolized and/or incorporated into cardiac lipids in distinct manners. In support of the concept that the diet-induced alterations reflect changes specifically in cardiomyocytes, we observed that direct supplementation of cultured guinea pig myocytes for 2-3 weeks with EPA or DHA produced changes in the PUFA profiles of their TPL that were qualitatively similar to those observed in tissue from the dietary study. The factors that regulate specific deposition of n-3 PUFA from either dietary oils or individual PUFA are not yet known, however the differences that we observed could in some manner be related to cardiac function and thus their relative potentials as health-promoting dietary fats.  相似文献   

11.
Hypoestrogenic states escalate bone loss in animals and humans. This study evaluated the effects of the amount and ratio of dietary n-6 and n-3 polyunsaturated fatty acids (PUFAs) on bone mineral in 3-month-old sexually mature ovariectomized (OVX) Sprague-Dawley rats. For 12 weeks, the rats were fed either a high-PUFA (HP) or a low-PUFA (LP) diet with a ratio of n-6/n-3 PUFAs of 5:1 (HP5 and LP5) or 10:1 (HP10 and LP10). All diets (modified AIN-93G) provided 110.4 g/kg of fat from safflower oil and/or high-oleate safflower oil blended with n-3 PUFAs (DHASCO oil) as a source of docosahexaenoic acid (DHA). Fatty acid analyses confirmed that the dietary ratio of 5:1 significantly elevated the amount of DHA in the periosteum, marrow and cortical and trabecular bones of the femur. Dual-energy X-ray absorptiometry measurements for femur and tibia bone mineral content (BMC) and bone mineral density showed that the DHA-rich diets (HP5 and LP5) resulted in a significantly lower bone loss among the OVX rats at 12 weeks. Rats fed the LP diets displayed the lowest overall serum concentrations of the bone resorption biomarkers pyridinoline (Pyd) and deoxypyridinoline, whereas the bone formation marker osteocalcin was lowest in the HP groups. Regardless of the dietary PUFA content, DHA in the 5:1 diets (HP5 and LP5) preserved rat femur BMC in the absence of estrogen. This study indicates that the dietary ratio of n-6/n-3 PUFAs (LP5 and HP5) and bone tissue concentration of total long-chain n-3 PUFAs (DHA) minimize femur bone loss as evidenced by a higher BMC in OVX rats. These findings show that dietary DHA lowers the ratio of 18:2n-6 (linoleic acid)/n-3 in bone compartments and that this ratio in tissue correlates with reduced Pyd but higher bone alkaline phosphatase activity and BMC values that favor bone conservation in OVX rats.  相似文献   

12.
The effect of altering cardiac concentrations of precursors and inhibitors of prostaglandin synthesis by varying fat intake was determined in rats injected with the cardiotoxic drug isoproterenol, following pretreatment with aspirin or potassium phosphate buffer solution. Prior to injection, four groups of rats were fed either a low-fat diet (3.7 energy percent coconut oil 3.7 energy percent safflower oil) or a high-fat diet (3.7 energy percent safflower oil-36.4 energy percent coconut oil mixture or 40.1 energy percent safflower oil.) Mortality as well as fatty acid composition of cardiac lipids changed in response to altered kinds and amounts of fats. Mortality and cardiac C20:4/C22:6 ratio were lowered by feeding 3.7 energy percent coconut oil, and increased by feeding 40.1 energy percent safflower oil. Aspirin reduced mortality in rats fed 40.1 energy percent safflower oil, but not in rats fed other diets. Results suggest that dietary manipulations which increase tissue content of polyunsaturated fatty acids of the n-6 type relative to those of the n-3 type may increase sensitivity to isoproterenol, and that effectiveness of aspirin in reducing isoproterenol-induced mortality depends upon the n-6/n-3 ratio of cardiac fatty acids.  相似文献   

13.
Abstract: Female rats were fed pursed diets containing 10% safflower oil, which is high in linoleic acid, from approximately 2 weeks prior to mating until the 14th day of gestation. They were then fed purified diets containing safflower oil, soybean oil (containing linoleic and linolenic acids), or hydrogenated coconut oil (essential fatty acid deficient). On days 16, 18, and 21 of gestation, foetuses were removed by caesarean section and the brains were subjected to fatty acid analysis. By day 16 of gestation, the ethanolamine glycerophospholipids and combined serine-inositol glycerophospholipids were rich in polyunsaturated fatty acids, particularly arachidonic acid. Between days 16 and 21 of gestation, there was a marked increase in the C22-polyunsaturated acids in these glycerophospholipids, with 225n-6 deposited in foetuses from dams fed safflower or coconut oils and 22:6n-3 deposition occurring in the soybean oil group; the effects of essential fatty acid deficiency in this period were minimal. A similar pattern was evident in the choline glycerophospholipids but this fraction contained less of the polyunsaturated acids. The data are consistent with increased placental transfer of highly unsaturated fatty acids or increased foetal synthesis of these compounds during the last week of gestation, with the actual fatty acid pattern reflecting the dietary fat available to the dam.  相似文献   

14.
Exogenously hypercholesterolemic (ExHC) rats were fed on an atherogenic diet supplemented with 1% each of either ethyl ester docosahexaenoic acid [EE-DHA, 22:6(n-3)], ethyl ester eicosapentaenoic acid [EE-EPA, 20:5(n-3)] or safflower oil (SO) for 6 months. The rats fed on the diets containing EE-EPA or EE-DHA, compared with those fed on SO, had lower serum cholesterol and triacylglycerol levels, less aggregation of platelets and slower progress of intimal thickening in the ascending aorta. Relative to the SO-fed rats, both of the (n-3) fatty acid-fed rats had a significantly reduced proportion of arachidonic acid in the platelet and aortic phospholipids, and lower production of thromboxane A2 by platelets and of prostacyclin by the aorta. These results suggest that EPA and DHA are similarly involved in preventing atherosclerosis development by reducing hypercholesterolemia and modifying the platelet functions.  相似文献   

15.
For 8 weeks 10 male weanling Sprague-Dawley rats were fed a semisynthetic diet containing by weight either 20% corn oil or rapeseed oils containing different amounts of erucic acid (Brassica napus var. Zephyr, 0.6%; B. napus var. Oro, 1.8%; B. campestris var. Span, 4.8%; or B. campestris var. Echo and Arlo, i.e., regular rapeseed oil, 23.6%). At 4-5 weeks after the experiment began, rats receiving the diets containing rapeseed oil showed evidence of alopecia and developed scaly, hemorrhagic, and necrotic tails, as well as scaliness of the feet, similar to the lesions described in essential fatty acid (EFA) deficiency. This condition became most severe between 5 and 8 weeks and had disappeared by 14 weeks. Fatty acid analysis of the diets and tissues of the animals did not reveal any evidence of EFA deficiency. It is suggested that these symptoms observed might be related to a possible inhibition of prostaglandin biosynthesis in rats fed rapeseed oils.  相似文献   

16.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

17.
Rats, chicks and pigs were fed diets containing safflower oil or tallow. Plasma triglyceride levels were elevated when tallow, rather than safflower oil was added to the diet of rats, unchanged in chicks and lowered when tallow, rather than safflower oil was fed to pigs. The rate of fatty acid synthesis in rat and chick liver was higher, whereas the rate of lipogenesis in adipose tissue preparations from rats and pigs was lower when tallow, rather than safflower oil was fed. These results indicate that there are species-specific, as well as organ-specific, metabolic responses to various dietary fats.  相似文献   

18.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

19.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号